LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bai, Lu; Rossi, Luca; Cui, Lixin; Zhang, Zhihong; Ren, Peng; Xiao, Bai; Hancock, Edwin R
Languages: English
Types: Article
Subjects:
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Aziz, F., Wilson, R.C., Hancock, E.R., 2013. Backtrackless walks on a graph. IEEE Transactions on Neural Networks and Learning Systems 24, 977-989.
    • Bach, F.R., 2008. Graph kernels between point clouds, in: Proceedings of ICML, pp. 25-32.
    • Bai, L., Hancock, E.R., 2013. Graph kernels from the jensen-shannon divergence. Journal of Mathematical Imaging and Vision 47, 60-69.
    • Bai, L., Hancock, E.R., 2016. Fast depth-based subgraph kernels for unattributed graphs. Pattern Recognition 50, 233-245.
    • Bai, L., Ren, P., Hancock, E.R., 2014a. A hypergraph kernel from isomorphism tests, in: Proceedings of ICPR, pp. 3880-3885.
    • Bai, L., Rossi, L., Bunke, H., Hancock, E.R., 2014b. Attributed graph kernels using the jensen-tsallis q-differences, in: Proceedings of ECML-PKDD, pp. 99-114.
    • Bai, L., Rossi, L., Torsello, A., Hancock, E.R., 2015a. A quantum jensenshannon graph kernel for unattributed graphs. Pattern Recognition 48, 344- 355.
    • Bai, L., Rossi, L., Zhang, Z., Hancock, E.R., 2015b. An aligned subtree kernel for weighted graphs, in: Proceedings of ICML, pp. 30-39.
    • Bai, L., Zhang, Z., Wang, C., Bai, X., Hancock, E.R., 2015c. A graph kernel based on the jensen-shannon representation alignment, in: Proceedings of IJCAI, pp. 3322-3328.
    • Barra, V., Biasotti, S., 2014. 3d shape retrieval and classification using multiple kernel learning on extended reeb graphs. The Visual Computer 30, 1247- 1259.
    • Biasotti, S., Marini, S., Mortara, M., Patane`, G., Spagnuolo, M., Falcidieno, B., 2003. 3d shape matching through topological structures, in: Proceedings of DGCI, pp. 194-203.
    • Borgwardt, K.M., Kriegel, H.P., 2005. Shortest-path kernels on graphs, in: Proceedings of the IEEE International Conference on Data Mining, pp. 74- 81.
    • Borgwardt, K.M., Ong, C.S., Scho¨nauer, S., Vishwanathan, S.V.N., Smola, A.J., Kriegel, H., 2005. Protein function prediction via graph kernels, in: Proceedings Thirteenth International Conference on Intelligent Systems for Molecular Biology 2005, Detroit, MI, USA, 25-29 June 2005, pp. 47-56.
    • Brun, L., Conte, D., Foggia, P., Vento, M., Villemin, D., 2010. Symbolic learning vs. graph kernels: An experimental comparison in a chemical application, in: Local Proceedings of the Fourteenth East-European Conference on Advances in Databases and Information Systems, Novi Sad, Serbia, September 20-24, 2010, pp. 31-40.
    • Emmert-Streib, F., Dehmer, M., 2011. Networks for systems biology: conceptual connection of data and function. IET Syst Biol. 5, 185-207.
    • Emms, D., Severini, S., Wilson, R.C., Hancock, E.R., 2009. Coined quantum walks lift the cospectrality of graphs and trees. Pattern Recognition 42, 1988-2002.
    • Farhi, E., Gutmann, S., 1998. Quantum computation and decision trees. Physical Review A 58, 915.
    • Foggia, P., Percannella, G., Vento, M., 2014. Graph matching and learning in pattern recognition in the last 10 years. International Journal of Pattern Recognition and Artificial Intelligence 28.
    • Gaidon, A., Harchaoui, Z., Schmid, C., 2011. A time series kernel for action recognition, in: Proceedings of BMVC, pp. 1-11.
    • Ga¨rtner, T., 2003. A survey of kernels for structured data. SIGKDD Explorations 5, 49-58.
    • Ga¨rtner, T., Flach, P., Wrobel, S., 2003. On graph kernels: Hardness results and efficient alternatives, in: Proceedings of COLT, pp. 129-143.
    • Harchaoui, Z., Bach, F., 2007. Image classification with segmentation graph kernels, in: Proceedings of CVPR.
    • Haussler, D., 1999. Convolution kernels on discrete structures, in: Technical Report UCS-CRL-99-10, Santa Cruz, CA, USA.
    • Kashima, H., Tsuda, K., Inokuchi, A., 2003. Marginalized kernels between labeled graphs, in: Proceedings of ICML, pp. 321-328.
    • L, G., 1996. A fast quantum mechanical algorithm for database search, in: Proceedings of ACM Symposium on the Theory of Computation, pp. 212- 219.
    • Lamberti, P., Majtey, A., Borras, A., Casas, M., Plastino, A., 2008. Metric character of the quantum jensen-shannon divergence. Physical Review A 77, 052311.
    • Majtey, A., Lamberti, P., Prato, D., 2005. Jensen-shannon divergence as a measure of distinguishability between mixed quantum states. Physical Review A 72, 052310.
    • Nielsen, M., Chuang, I., 2010. Quantum computation and quantum information. Cambridge university press.
    • Prim, R.C., 1957. Shortest connection networks and some generalizations. Bell system technical journal 36, 1389-1401.
    • Qiu, H., Hancock, E.R., 2007. Graph simplification and matching using commute times. Pattern Recognition 40, 2874-2889.
    • Ren, P., Aleksic, T., Emms, D., Wilson, R.C., Hancock, E.R., 2011a. Quantum walks, ihara zeta functions and cospectrality in regular graphs. Quantum Information Process 10, 405-417.
    • Ren, P., Wilson, R.C., Hancock, E.R., 2011b. Graph characterization via ihara coefficients. IEEE Transactions on Neural Networks 22, 233-245.
    • Rossi, L., Torsello, A., Hancock, E.R., 2013a. Attributed graph similarity from the quantum jensen-shannon divergence, in: Similarity-Based Pattern Recognition. Springer, pp. 204-218.
    • Rossi, L., Torsello, A., Hancock, E.R., 2013b. A continuous-time quantum walk kernel for unattributed graphs, in: Proceedings of GbRPR, pp. 101- 110.
    • Rossi, L., Torsello, A., Hancock, E.R., 2015. Measuring graph similarity through continuous-time quantum walks and the quantum jensen-shannon divergence. Physical Review E 91, 022815.
    • Scho¨lkopf, B., Smola, A., 2002. Learning with Kernels. MIT Press.
    • Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M., 2010. Weisfeiler-lehman graph kernels. Journal of Machine Learning Research 1, 1-48.
    • Vento, M., 2015. A long trip in the charming world of graphs for pattern recognition. Pattern Recognition 48, 291-301.
    • Vishwanathan, S.V.N., Schraudolph, N.N., Kondor, R., Borgwardt, K.M., 2010. Graph kernels. Journal of Machine Learning Research 11, 1201-1242.
    • Wang, L., Sahbi, H., 2013. Directed acyclic graph kernels for action recognition, in: Proceedings of ICCV, pp. 3168-3175.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article