LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Syme, Christopher D.; Mosses, Joanna; Gonz?lez-Jim?nez, Mario; Shebanova, Olga; Walton, Finlay; Wynne, Klaas (2017)
Publisher: Nature Publishing Group
Journal: Scientific Reports
Languages: English
Types: Article
Subjects: Article

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics, Condensed Matter::Soft Condensed Matter, Condensed Matter::Disordered Systems and Neural Networks, Physics::Chemical Physics
Frustration of crystallisation by locally favoured structures is critically important in linking the phenomena of supercooling, glass formation, and liquid-liquid transitions. Here we show that the putative liquid-liquid transition in n-butanol is in fact caused by geometric frustration associated with an isotropic to rippled lamellar liquid-crystal transition. Liquid-crystal phases are generally regarded as being “in between” the liquid and the crystalline state. In contrast, the liquid-crystal phase in supercooled n-butanol is found to inhibit transformation to the crystal. The observed frustrated phase is a template for similar ordering in other liquids and likely to play an important role in supercooling and liquid-liquid transitions in many other molecular liquids.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Reinitzer, F. Beitrage zur Kenntniss des Gholesterins. Monatsh. Chem. 9, 421-441 (1888).
    • 2. Blinov, L. M. Structure and Properties of Liquid Crystals. (Springer Science and Business Media, 2010).
    • 3. Armitage, D. & Price, F. P. Supercooling and Nucleation in Liquid Crystals. Mol. Cryst. Liq. Cryst. 44, 33-44 (1978).
    • 4. Bhat, M. H. et al. Vitrification of a monatomic metallic liquid. Nature 448, 787-790 (2007).
    • 5. Mcmillan, P., Wilson, M., Daisenberger, D. & Machon, D. A density-driven phase transition between semiconducting and metallic polyamorphs of silicon. Nat Mater 4, 680-684 (2005).
    • 6. Katayama, Y. et al. A first-order liquid-liquid phase transition in phosphorus. Nature 403, 170-173 (2000).
    • 7. Kurita, R. & Tanaka, H. Critical-like phenomena associated with liquid-liquid transition in a molecular liquid. Science 306, 845-848 (2004).
    • 8. Kurita, R. & Tanaka, H. On the abundance and general nature of the liquid-liquid phase transition in molecular systems. J PhysCondens Mat 17, L293-L302 (2005).
    • 9. Mosses, J., Syme, C. D. & Wynne, K. Order Parameter of the Liquid-Liquid Transition in a Molecular Liquid. J Phys Chem Lett 6, 38-43 (2015).
    • 10. Murata, K.-I. & Tanaka, H. Microscopic identification of the order parameter governing liquid-liquid transition in a molecular liquid. Proc Natl Acad Sci USA 112, 5956-5961 (2015).
    • 11. Kurita, R., Murata, K.-I. & Tanaka, H. Control of uflidity and miscibility of a binary liquid mixture by the liquid-liquid transition. Nat Mater 7, 647-652 (2008).
    • 12. Dressel, C., Reppe, T., Prehm, M., Brautzsch, M. & Tschierske, C. Chiral self-sorting and amplification in isotropic liquids of achiral molecules. Nat Chem 6, 971-977 (2014).
    • 13. Wypych, A., Guinet, Y. & Hedoux, A. Isothermal transformation of supercooled liquid n-butanol near the glass transition: Polyamorphic transitions in molecular liquids investigated using Raman scattering. Phys Rev B 76, 144202 (2007).
    • 14. Hassaine, M. et al. eThrmal properties and Brillouin-scattering study of glass, crystal, and "glacial" states in n-butanol. J Chem Phys 131, 174508 (2009).
    • 15. Shmytko, I. M., Jimenez-Rioboo, R. J., Hassaine, M. & Ramos, M. A. Structural and thermodynamic studies of n-butanol. J PhysCondens Mat 22, 195102 (2010).
    • 16. Derollez, P., Hedoux, A., Guinet, Y., Danede, F. & Paccou, L. Structure determination of the crystalline phase of n-butanol by powder X-ray difraction and study of intermolecular associations by Raman spectroscopy. Acta Crystallogr B 69, 195-202 (2013).
    • 17. Bolshakov, B. V. & Dzhonson, A. G. On the number of amorphous phases in n-butanol. Doklady Phys Chem 393, 318-320 (2003).
    • 18. Hedoux, A., Guinet, Y., Paccou, L., Derollez, P. & Danede, F. Vibrational and structural properties of amorphous n-butanol: A complementary Raman spectroscopy and X-ray difraction study. J Chem Phys 138, 214506 (2013).
    • 19. Hunt, N. T., Turner, A. R. & Wynne, K. Inter- and intramolecular hydrogen bonding in phenol derivatives: a model system for polyL-tyrosine. J Phys Chem B 109, 19008-19017 (2005).
    • 20. Fecko, C., Eaves, J. & Tokmakof, A. Isotropic and anisotropic Raman scattering from molecular liquids measured by spatially masked optical Kerr eefct spectroscopy. J Chem Phys 117, 1139-1154 (2002).
    • 21. Fukasawa, T. et al. Relation between dielectric and low-frequency Raman spectra of hydrogen-bond liquids. Phys Rev Lett 95, 197802 (2005).
    • 22. Gránásy, L., Pusztai, T., Tegze, G., Warren, J. & Douglas, J. Growth and form of spherulites. Phys Rev E 72, 011605 (2005).
    • 23. Paolantoni, M., Sassi, P., Morresi, A. & Cataliotti, R. S. Infrared study of 1-octanol liquid structure. Chem Phys 310, 169-178 (2005).
    • 24. Maccallum, J. L. & Tieleman, D. P. Structures of Neat and Hydrated 1-Octanol from Computer Simulations. J Am Chem Soc 124, 15085-15093 (2002).
    • 25. Triolo, A., Russina, O., Fazio, B., Triolo, R. & Di Cola, E. Morphology of 1-alkyl-3-methylimidazolium hexauflorophosphate room temperature ionic liquids. Chem Phys Lett 457, 362-365 (2008).
    • 26. Jensen, M. H., Alba-Simionesco, C., Niss, K. & Hecksher, T. A systematic study of the isothermal crystallization of the mono-alcohol n-butanol monitored by dielectric spectroscopy. J Chem Phys 143, 134501-134509 (2015).
    • 27. Chen, L. et al. Identicfiation of Alcohol Conformers by Raman Spectra in the C-H Stretching Region. J Phys Chem A 119, 3209-3217 (2015).
    • 28. Hassaine, M. & Ramos, M. A. Calorimetric studies at low temperatures of glass-forming 1-butanol and 2-butanol. Phys. Status Solidi A 208, 2245-2248 (2011).
    • 29. Frank, F. C. Supercooling of liquids. Proc R Soc Lon Ser-A 215, 43-46 (1952).
    • 30. Ramirez, A. Strongly geometricall frustrated magnets. Ann. Rev. Mat. Sci. 24, 453-480 (1994).
    • 31. Nowak, E. R., Knight, J. B., Ben-Naim, E., Jaeger, H. M. & Nagel, S. R. Density uflctuations in vibrated granular materials. Phys Rev E 57, 1971-1982 (1998).
    • 32. Han, Y. et al. Geometric frustration in buckled colloidal monolayers. Nature 456, 898-903 (2008).
    • 33. Mosses, J., Turton, D. A., Lue, L., Sefcik, J. & Wynne, K. Crystal templating through liquid-liquid phase separation. Chem Commun 51, 1139-1142 (2015).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article