LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Moore, Benjamin; Miles, Andrew J.; Guerra-Giraldez, Cristina; Simpson, Peter; Iwata, Momi; Wallace, B. A.; Matthews, Stephen J.; Smith, Deborah F.; Brown, Katherine A. (2010)
Publisher: American Society for Biochemistry and Molecular Biology
Journal: The Journal of Biological Chemistry
Languages: English
Types: Article
Subjects: NMR, Parasite, bcs, Leishmania major, Circular Dichroism (CD), Protein Folding, SHERP, Protein Structure and Folding, Lipid, Vacuolar ATPase, Protein Cross-linking, SRCD, Synchrotron Radiation Circular Dichroism
The 57-residue small hydrophilic endoplasmic reticulum-associated protein (SHERP) shows highly specific, stage-regulated expression in the non-replicative vector-transmitted stages of the kinetoplastid parasite, Leishmania major, the causative agent of human cutaneous leishmaniasis. Previous studies have demonstrated that SHERP localizes as a peripheral membrane protein on the cytosolic face of the endoplasmic reticulum and on outer mitochondrial membranes, whereas its high copy number suggests a critical function in vivo. However, the absence of defined domains or identifiable orthologues, together with lack of a clear phenotype in transgenic parasites lacking SHERP, has limited functional understanding of this protein. Here, we use a combination of biophysical and biochemical methods to demonstrate that SHERP can be induced to adopt a globular fold in the presence of anionic lipids or SDS. Cross-linking and binding studies suggest that SHERP has the potential to form a complex with the vacuolar type H+-ATPase. Taken together, these results suggest that SHERP may function in modulating cellular processes related to membrane organization and/or acidification during vector transmission of infective Leishmania.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Desjeux, P. (2004) Nat. Rev. Microbiol. 2, 692- 693
    • 2. Murray, H. W., Berman, J. D., Davies, C. R., and Saravia, N. G. (2005) Lancet 366, 1561-1577
    • 3. Chappuis, F., Sundar, S., Hailu, A., Ghalib, H., Rijal, S., Peeling, R. W., Alvar, J., and Boelaert, M. (2007) Nat. Rev. Microbiol. 5, 873- 882
    • 4. Sacks, D. L., and Perkins, P. V. (1984) Science 223, 1417-1419
    • 5. Bates, P. A. (2007) Int. J. Parasitol. 37, 1097-1106
    • 6. Sacks, D. L., Hieny, S., and Sher, A. (1985) J. Immunol. 135, 564 -569
    • 7. Beverley, S. M., and Turco, S. J. (1998) Trends Microbiol. 6, 35- 40
    • 8. Sacks, D., and Kamhawi, S. (2001) Annu. Rev. Microbiol 55, 453- 483
    • 9. Descoteaux, A., and Turco, S. J. (2002) Microbes Infect. 4, 975-981
    • 10. Knuepfer, E., Stierhof, Y. D., McKean, P. G., and Smith, D. F. (2001) Biochem. J. 356, 335-344
    • 11. Ivens, A. C., Peacock, C. S., Worthey, E. A., Murphy, L., Aggarwal, G., Berriman, M., Sisk, E., Rajandream, M. A., Adlem, E., Aert, R., Anupama, A., Apostolou, Z., Attipoe, P., Bason, N., Bauser, C., Beck, A., Beverley, S. M., Bianchettin, G., Borzym, K., Bothe, G., Bruschi, C. V., Collins, M., Cadag, E., Ciarloni, L., Clayton, C., Coulson, R. M., Cronin, A., Cruz, A. K., Davies, R. M., De Gaudenzi, J., Dobson, D. E., Duesterhoeft, A., Fazelina, G., Fosker, N., Frasch, A. C., Fraser, A., Fuchs, M., Gabel, C., Goble, A., Goffeau, A., Harris, D., Hertz-Fowler, C., Hilbert, H., Horn, D., Huang, Y., Klages, S., Knights, A., Kube, M., Larke, N., Litvin, L., Lord, A., Louie, T., Marra, M., Masuy, D., Matthews, K., Michaeli, S., Mottram, J. C., Mu¨ller-Auer, S., Munden, H., Nelson, S., Norbertczak, H., Oliver, K., O'neil, S., Pentony, M., Pohl, T. M., Price, C., Purnelle, B., Quail, M. A., Rabbinowitsch, E., Reinhardt, R., Rieger, M., Rinta, J., Robben, J., Robertson, L., Ruiz, J. C., Rutter, S., Saunders, D., Scha¨fer, M., Schein, J., Schwartz, D. C., Seeger, K., Seyler, A., Sharp, S., Shin, H., Sivam, D., Squares, R., Squares, S., Tosato, V., Vogt, C., Volckaert, G., Wambutt, R., Warren, T., Wedler, H., Woodward, J., Zhou, S., Zimmermann, W., Smith, D. F., Blackwell, J. M., Stuart, K. D., Barrell, B., and Myler, P. J. (2005) Science 309, 436 - 442
    • 12. Peacock, C. S., Seeger, K., Harris, D., Murphy, L., Ruiz, J. C., Quail, M. A., Peters, N., Adlem, E., Tivey, A., Aslett, M., Kerhornou, A., Ivens, A., Fraser, A., Rajandream, M. A., Carver, T., Norbertczak, H., Chillingworth, T., Hance, Z., Jagels, K., Moule, S., Ormond, D., Rutter, S., Squares, R., Whitehead, S., Rabbinowitsch, E., Arrowsmith, C., White, B., Thurston, S., Bringaud, F., Baldauf, S. L., Faulconbridge, A., Jeffares, D., Depledge, D. P., Oyola, S. O., Hilley, J. D., Brito, L. O., Tosi, L. R., Barrell, B., Cruz, A. K., Mottram, J. C., Smith, D. F., and Berriman, M. (2007) Nat. Genet. 39, 839 - 847
    • 13. Wien, F., and Wallace, B. A. (2005) Appl. Spectrosc. 59, 1109 -1113
    • 14. Miles, A. J., and Wallace, B. A. (2006) Chem. Soc. Rev. 35, 39 -51
    • 15. Miles, A. J., Wien, F., Lees, J. G., Rodger, A., Janes, R. W., and Wallace, B. A. (2003) Spectroscopy 17, 653- 661
    • 16. Lees, J. G., Smith, B. R., Wien, F., Miles, A. J., and Wallace, B. A. (2004) Anal. Biochem. 332, 285-289
    • 17. Whitmore, L., and Wallace, B. A. (2004) Nucleic Acids Res. 32, W668 -W673
    • 18. Whitmore, L., and Wallace, B. A. (2008) Biopolymers 89, 392- 400
    • 19. Compton, L. A., and Johnson, W. C., Jr. (1986) Anal. Biochem. 155, 155-167
    • 20. van Stokkum, I. H., Spoelder, H. J., Bloemendal, M., van Grondelle, R., and Groen, F. C. (1990) Anal. Biochem. 191, 110 -118
    • 21. Lees, J. G., Miles, A. J., Janes, R. W., and Wallace, B. A. (2006) BMC Bioinformatics 7, 507-517
    • 22. Sreerama, N., Venyaminov, S. Y., and Woody, R. W. (1999) Protein Sci. 8, 370 -380
    • 23. Lees, J. G., Miles, A. J., Wien, F., and Wallace, B. A. (2006) Bioinformatics 22, 1955-1962
    • 24. Mao, D., and Wallace, B. A. (1984) Biochemistry 23, 2667-2673
    • 25. Sattler, M., Schleucher, J., and Griesinger, C. (1999) Prog. NMR Spectrosc. 34, 93-158
    • 26. Farrow, N. A. Zhang, O., Forman-Kay, J. D., and Kay, L. E. (1994) J. Biomol. NMR 4, 727-734
    • 27. Meier, S., Ha¨ussinger, D., and Grzesiek, S. (2002) J. Biomol. NMR 24, 351-356
    • 28. Linge, J. P., Habeck, M., Rieping, W., and Nilges, M. (2003) Bioinformatics 19, 315-316
    • 29. Cornilescu, G., Delaglio, F., and Bax, A. (1999) J. Biomol. NMR 13, 289 -302
    • 30. Fossi, M., Oschkinat, H., Nilges, M., and Ball, L. J. (2005) J. Magn. Reson. 175, 92-102
    • 31. McKean, P. G., Denny, P. W., Knuepfer, E., Keen, J. K., and Smith, D. F. (2001) Cell Microbiol. 3, 511-523
    • 32. Yokoyama, K., Nagata, K., Imamura, H., Ohkuma, S., Yoshida, M., and Tamakoshi, M. (2003) J. Biol. Chem. 278, 42686 - 42691
    • 33. Urwin, P. E., McPherson, M. J., and Atkinson, H. J. (1998) Planta 204, 472- 479
    • 34. Wallace, B. A., Lees, J. G., Orry, A. J., Lobley, A., and Janes, R. W. (2003) Protein Sci. 12, 875- 884
    • 35. Cole, C., Barber, J. D., and Bartonm, G. J. (2008) Nucleic. Acids Res. 36, W197-W201
    • 36. Ward, J. J., Sodhi, J. S., McGuffin, L. J., Buxton, B. F., and Jones, D. T. (2004) J. Mol. Biol. 337, 635- 645
    • 37. Leifso, K., Cohen-Freue, G., Dogra, N., Murray, A., and McMaster, W. R. (2007) Mol. Biochem. Parasitol. 152, 35- 46
    • 38. Forgac, M. (2007) Nat. Rev. Mol. Cell Biol. 8, 917-929
    • 39. Qi, J., Wang, Y., and Forgac, M. (2007) J. Bioenerg. Biomembr. 39, 423- 426
    • 40. Marshansky, V., and Futai, M. (2008) Curr. Opin. Cell Biol. 20, 415- 426
    • 41. Davidson, W. S., Jonas, A., Clayton, D. F., and George, J. M. (1998) J. Biol. Chem. 273, 9443-9449
    • 42. Jo, E., McLaurin, J., Yip, C. M., St George-Hyslop, P., and Fraser, P. E. (2000) J. Biol. Chem. 275, 34328 -34334
    • 43. Boucher, J., Ramsamy, T. A., Braschi, S., Sahoo, D., Neville, T. A., and Sparks, D. L. (2004) J. Lipid Res. 45, 849 - 858
    • 44. Segrest, J. P., Garber, D. W., Brouillette, C. G., Harvey, S. C., and Anantharamaiah, G. M. (1994) Adv. Protein Chem. 45, 303-369
    • 45. Bussell, R., Jr., and Eliezer, D. (2003) J. Mol. Biol. 329, 763-778
    • 46. Wang, G., Sparrow, J. T., and Cushley, R. J. (1997) Biochemistry 36, 13657-13666
    • 47. MacRaild, C. A., Howlett, G. J., and Gooley, P. R. (2004) Biochemistry 43, 8084 - 8093
    • 48. Gangabadage, C. S., Zdunek, J., Tessari, M., Nilsson, S., Olivecrona, G., and Wijmenga, S. S. (2008) J. Biol. Chem. 283, 17416 -17427
    • 49. Ramakrishnan, M., Jensen, P. H., and Marsh, D. (2003) Biochemistry 42, 12919 -12926
    • 50. Jao, C. C., Der-Sarkissian, A., Chen, J., and Langen, R. (2004) Proc. Natl. Acad. Sci. U.S.A. 101, 8331- 8336
    • 51. Jao, C. C., Hegde, B. G., Chen, J., Haworth, I. S., and Langen, R. (2008) Proc. Natl. Acad. Sci. U.S.A. 105, 19666 -19671
    • 52. Ulmer, T. S., Bax, A., Cole, N. B., and Nussbaum, R. L. (2005) J. Biol. Chem. 280, 9595-9603
    • 53. Trexler, A. J., and Rhoades, E. (2009) Biochemistry 48, 2304 -2306
    • 54. Ferreon, A. C., and Deniz, A. A. (2007) Biochemistry 46, 4499 - 4509
    • 55. Drescher, M., Godschalk, F., Veldhuis, G., van Rooijen, B. D., Subramaniam, V., and Huber, M. (2008) Chembiochem 9, 2411-2416
    • 56. Bodner, C. R., Dobson, C. M., and Bax, A. (2009) J. Mol. Biol. 390, 775-790
    • 57. George, J. M., Jin, H., Woods, W. S., and Clayton, D. F. (1995) Neuron 15, 361-372
    • 58. Weinreb, P. H., Zhen, W., Poon, A. W., Conway, K. A., Lansbury, and P. T., Jr. (1996) Biochemistry 35, 13709 -13715
    • 59. Chandra, S., Chen, X., Rizo, J., Jahn, R., and Su¨dhof, T. C. (2003) J. Biol. Chem. 278, 15313-15318
    • 60. Pandey, A. P., Haque, F., Rochet, J. C., and Hovis, J. S. (2009) Biophys. J. 96, 540 -551
    • 61. Cunningham, M. L., Titus, R. G., Turco, S. J., and Beverley, S. M. (2001) Science 292, 285-287
    • 62. Bates, P. A. (2008) Curr. Opin. Microbiol. 11, 340 -344
    • 63. Flinn, H. M., and Smith, D. F. (1992) Nucleic Acids Res. 20, 755-762
    • 64. Flinn, H. M., Rangarajan, D., and Smith, D. F. (1994) Mol. Biochem. Parasitol. 65, 259 -270
    • 65. McKean, P. G., Delahay, R., Pimenta, P. F., and Smith, D. F. (1997) Mol. Biochem. Parasitol. 85, 221-231
    • 66. Sa´dlova´, J., Price, H. P., Smith, B. A., Voty´pka, J., Volf, P., and Smith, D. F. (2010) Cell. Microbiol. 12, 1765-1779
    • 67. Beach, D. H., Holz, G. G., Jr., and Anekwe, G. E. (1979) J. Parasitol. 65, 201-216
    • 68. Wassef, M. K., Fioretti, T. B., and Dwyer, D. M. (1985) Lipids 20, 108 -115
    • 69. Rakotomanga, M., Blanc, S., Gaudin, K., Chaminade, P., and Loiseau, P. M. (2007) Antimicrob. Agents Chemother. 51, 1425-1430
    • 70. Kane, P. M. (2007) J. Bioenerg. Biomembr. 39, 415- 421
    • 71. Lau, W. C., and Rubinstein, J. L. (2010) Proc. Natl. Acad. Sci. U.S.A. 107, 1367-1372
    • 72. Kane, P. M. (2006) Microbiol. Mol. Biol. Rev. 70, 177-191
    • 73. Trombetta, E. S., Ebersold, M., Garrett, W., Pypaert, M., and Mellman, I. (2003) Science 299, 1400 -1403
    • 74. Diab, H., Ohira, M., Liu, M., Cobb, E., and Kane, P. M. (2009) J. Biol. Chem. 284, 13316 -13325
    • 75. Alexander, J., and Russell, D. G. (1992) Adv. Parasitol. 31, 175-254
    • 76. Besteiro, S., Williams, R. A., Morrison, L. S., Coombs, G. H., and Mottram, J. C. (2006) J. Biol. Chem. 281, 11384 -11396
    • 77. Williams, R. A., Tetley, L., Mottram, J. C., and Coombs, G. H. (2006) Mol. Microbiol. 61, 655- 674
    • 78. Besteiro, S., Williams, R. A., Coombs, G. H., and Mottram, J. C. (2007) Int. J. Parasitol. 37, 1063-1075
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

  • BioEntity Site Name
    2x43Protein Data Bank

Share - Bookmark

Funded by projects

Cite this article