Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Haynes, M. (Martin); Arber, T. D.; Verwichte, E. (Erwin) (2008)
Publisher: EDP Sciences
Languages: English
Types: Article
Subjects: QB
Aims. To establish the dominant wave modes generated by an internal, m = 1 kink instability in a short coronal flux tube.\ud Methods. The 3D MHD numerical simulations are performed using Lare3d to model the kink instability and the subsequent wave generation. The initial conditions are a straight, zero net current flux tube containing a twist higher than the kink instability threshold.\ud Results. It is shown that the kink instability initially sets up a 1st harmonic (1st overtone) that is converted through the rearrangement of the magnetic field into two out-of-phase fundamental slow modes. These slow modes are in the two entwined flux tubes created during the kink instability.\ud Conclusions. The long-lived oscillations established after a kink instability provide a possible way to identify whether sudden, short coronal loop brightenings may have resulted from a confined kink instability. The mode oscillation structure changes from the 1st harmonic to fundamental due to field line relaxation. The subsequent decay in the fundamental mode is comparable to observations\ud and is caused by shock dissipation. This result has important consequences for the damping of the slow mode oscillations observed by SUMER.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Amari, T., & Luciani, J. F. 1999, ApJ, 515, L81
    • Amari, T., Luciani, J. F., Aly, J. J., & Tagger, M. 1996, ApJ, 466, L39
    • Arber, T. D., Longbottom, A. W., & Van der Linden, R. A. M. 1999, ApJ, 517, 990
    • Arber, T. D., Longbottom, A. W., Gerrard, C. L., & Milne, A. M. 2001, J. Comput. Phys., 171, 151
    • Aulanier, G., Démoulin, P., & Grappin, R. 2005, A&A, 430, 1067
    • Baty, H. 1997, A&A, 318, 621
    • Baty, H. 2000, A&A, 360, 345
    • Baty, H., & Heyvaerts, J. 1996, A&A, 308, 935
    • Birn, J., Forbes, T. G., & Hesse, M. 2006, ApJ, 645, 732
    • De Moortel, I., & Hood, A. W. 2003, A&A, 408, 755
    • Fan, Y. 2005, ApJ, 630, 543
    • Gerrard, C. L., & Hood, A. W. 2003, Sol. Phys., 214, 151
    • Gerrard, C. L., Arber, T. D., Hood, A. W., & Van der Linden, R. A. M. 2001, A&A, 373, 1089
    • Gerrard, C. L., Arber, T. D., & Hood, A. W. 2002, A&A, 387, 687
    • Gerrard, C. L., Hood, A. W., & Brown, D. S. 2004, Sol. Phys., 222, 79
    • Haynes, M., & Arber, T. D. 2007, A&A, 467, 327
    • Hood, A. W., & Priest, E. R. 1981, Geophysical and Astrophysical Fluid Dynamics, 17, 297
    • Kliem, B., Dammasch, I. E., Curdt, W., & Wilhelm, K. 2002, ApJ, 568, L61
    • Lionello, R., Velli, M., Einaudi, G., & Mikic´, Z. 1998, ApJ, 494, 840
    • Nakariakov, V. M., Verwichte, E., Berghmans, D., & Robbrecht, E. 2000, A&A, 362, 1151
    • Nakariakov, V. M., Tsiklauri, D., Kelly, A., Arber, T. D., & Aschwanden, M. J. 2004, A&A, 414, L25
    • Ofman, L., & Wang, T. 2002, ApJ, 580, L85
    • Selwa, M., Murawski, K., & Solanki, S. K. 2005, A&A, 436, 701
    • Taroyan, Y., Erdélyi, R., Doyle, J. G., & Bradshaw, S. J. 2005, A&A, 438, 713
    • Tokman, M., & Bellan, P. M. 2002, ApJ, 567, 1202
    • Török, T., & Kliem, B. 2003, A&A, 406, 1043
    • Török, T., & Kliem, B. 2005, ApJ, 630, L97
    • Török, T., Kliem, B., & Titov, V. S. 2004, A&A, 413, L27
    • Tsiklauri, D., Nakariakov, V. M., Arber, T. D., & Aschwanden, M. J. 2004, A&A, 422, 351
    • Velli, M., Lionello, R., & Einaudi, G. 1997, Sol. Phys., 172, 257
    • Wang, T., Solanki, S. K., Curdt, W., Innes, D. E., & Dammasch, I. E. 2002, ApJ, 574, L101
    • Wang, T. J., Solanki, S. K., Curdt, W., et al. 2003, A&A, 406, 1105
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article