LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Sneddon, Gregor; Ganin, Alexey Y.; Yiu, Humphrey H.P. (2015)
Publisher: Wiley - V C H Verlag GmbH & Co. KGaA
Languages: English
Types: Article
Subjects:
In this article, we report a new sustainable synthesis procedure for manufacturing chitosan/silica CO2 adsorbents. Chitosan is a naturally abundant material and contains amine functionality, which is essential for selective CO2 adsorptions. It is, therefore, ideally suited for manufacturing CO2 adsorbents on a large scale. By coating chitosan onto high-surface-area mesoporous silica supports, including commercial fumed silica (an economical and accessible reagent) and synthetic SBA-15 and MCF silicas, we have prepared a new family of CO2 adsorbents, which have been fully characterised with nitrogen adsorption isotherms, thermogravimetric analysis/differential scanning calorimetry, TEM, FTIR spectroscopy and Raman spectroscopy. These adsorbents have achieved a significant CO2 adsorption capacity of up to 0.98 mmol g−1 at ambient conditions (P=1 atm and T=25 °C). The materials can also be fully regenerated/recycled on demand at temperatures as low as 75 °C with a >85 % retention of the adsorption capacity after 4 cycles, which makes them promising candidates for advanced CO2 capture, storage and utilisation technology.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [a] G. Sneddon, H. H. P. Yiu Chemical Engineering, School of Engineering and Physical Sciences Heriot-Watt University Edinburgh, EH14 4AS (UK) E-mail: [b] A. Y. Ganin School of Chemistry Joseph Black Building University of Glasgow, Glasgow, G12 8QQ (UK) Supporting information for this article is available on the WWW under http://dx.doi.org/10.1002/ente.201402211. 2015 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
    • [1] L. Li, N. Zhao, W. Wei, Y. Sun, Fuel 2013, 108, 112.
    • [2] U.S. Energy Information Administration (EIA), Annual Energy Outlook 2014 (AEO2014) Early Release Overview, 2013, http://www.eia.- gov/forecasts/aeo/er/pdf/0383er(2014).pdf, accessed on 03 December 2014.
    • [3] R. Trager, Chem. World 2014, 11, 8.
    • [4] B. A. Oyenekan, G. T. Rochelle, AIChE J. 2007, 53, 3144.
    • [5] A. Yamasaki, J. Chem. Eng. Jpn. 2003, 36, 361.
    • [6] M. S. Ojala, N. F. Serrano, P. Uusi-Kyyny, V. Alopaeus, Fluid Phase Equilib. 2014, 376, 85.
    • [7] D. J. Fauth, E. A. Frommell, J. S. Hoffman, R. P. Reasbeck, H. W. Pennline, Fuel Process. Technol. 2005, 86, 1503.
    • [8] K. P. Resnik, J. T. Yeh, H. W. Pennline, Int. J. Environ. Technol. Manage. 2004, 4, 89.
    • [9] J. T. Yeh, K. P. Resnik, K. Rygle, H. W. Pennline, Fuel Process. Technol. 2005, 86, 1533.
    • [10] L. Espinal, D. L. Poster, W. Wong-Ng, A. J. Allen, M. L. Green, Environ. Sci. Technol. 2013, 47, 11960.
    • [11] G. Sneddon, A. Greenaway, H. H. P. Yiu, Adv. Energy Mater. 2014, 4, 1301873.
    • [12] D. M. D Alessandro, B. Smit, J. R. Long, Angew. Chem. Int. Ed. 2010, 49, 6058; Angew. Chem. 2010, 122, 6194.
    • [13] S. Choi, J. H. Drese, C. W. Jones, ChemSusChem 2009, 2, 796.
    • [14] H. Y. Huang, R. T. Yang, D. Chinn, C. L. Munson, Ind. Eng. Chem. Res. 2003, 42, 2427.
    • [15] M. R. Mello, D. Phanon, G. Q. Silveira, P. L. Llewellyn, C. M. Ronconi, Microporous Mesoporous Mater. 2011, 143, 174.
    • [16] F. Y. Chang, K. J. Chao, H. H. Cheng, C. S. Tan, Sep. Purif. Technol. 2009, 70, 87.
    • [17] L. X. Zhang, C. C. Yu, W. R. Zhao, Z. L. Hua, H. R. Chen, L. Li, J. L. Shi, J. Non-Cryst. Solids 2007, 353, 4055.
    • [18] J. Berger, M. Reist, J. M. Mayer, O. Felt, N. A. Peppas, R. Gurny, Eur. J. Pharm. Biopharm. 2004, 57, 19.
    • [19] A. Danon, P. C. Stair, E. Weitz, J. Phys. Chem. C 2011, 115, 11540.
    • [20] M. Rinaudo, Prog. Polym. Sci. 2006, 31, 603.
    • [21] H. Yoshida, S. Oehlenschlaeger, Y. Minami, M. Terashima, J. Chem. Eng. Jpn. 2002, 35, 32.
    • [22] H. Yoshida, S. Oehlenschlaeger, Y. Minami, M. Terashima in Proceedings of the Second Pacific Basin Conference on Adsorption Science and Technology (Ed.: D. D. Do), World Scientific, Singapore, 2000, pp. 693 - 697.
    • [23] X. Li, B. H. Li, J. J. Deng, T. T. Lu, S. Wang, J. B. Li, D. S. Chen, Y. Q. Liu, S. H. Wang, Ind. Eng. Chem. Res. 2014, 53, 11137.
    • [24] “Silica”: O. W. Flçrke, H. A. Graetsch, F. Brunk, L. Benda, S. Paschen, H. E. Bergna, W. O. Roberts, W. A. Welsh, C. Libanati, M. Ettlinger, D. Kerner, M. Maier, W. Meon, R. Schmoll, H. Gies, D. Schiffmann in Ullmann s Encyclopedia of Industrial Chemistry, Vol. 32, Wiley-VCH, Weinheim, 2008, pp. 421 - 508.
    • [25] N. B. Colthup, L. H. Daly, S. E. Wiberley, Introduction to Infrared and Raman Spectroscopy, 3rd ed., Academic, London, 1990, pp. 387 - 481.
    • [26] R. Babarao, J. Jiang, Langmuir 2008, 24, 6270.
    • [27] Z. Zhao, X. Ma, A. Kasik, Z. Li, Y. S. Lin, Ind. Eng. Chem. Res. 2013, 52, 1102.
    • [28] X. Wang, C. Song, A. M. Gaffney, R. Song, Catal. Today 2014, 238, 95.
    • [29] Y. Labreche, Y. Fan, F. Rezaei, R. P. Lively, C. W. Jones, W. J. Koros, ACS Appl. Mater. Interfaces 2014, 6, 19336.
    • [30] Y. Han, G. Hwang, H. Kim, B. Z. Haznedaroglu, B. Lee, Chem. Eng. J. 2015, 259, 653.
    • [31] S. P. Wang, L. J. Fan, C. Li, Y. J. Zhao, X. B. Ma, ACS Appl. Mater. Interfaces 2014, 6, 18072.
    • [32] J. Jammaer, T. S. van Erp, A. Aerts, C. E. A. Kirschhock, J. A. Martens, J. Am. Chem. Soc. 2011, 133, 13737.
    • [33] S. C. Kung, C. C. Chang, W. Fan, M. A. Snyder, Langmuir 2014, 30, 11802.
    • [34] H. H. P. Yiu, M. A. Keane, Z. A. D. Lethbridge, M. R. Lees, A. J. El Haj, J. Dobson, Nanotechnology 2008, 19, 255606.
    • [35] P. Schmidt-Winkel, C. J. Glinka, G. D. Stucky, Langmuir 2000, 16, 356.
    • Received: December 16, 2014 Revised: January 21, 2015 Published online on && &&, 0000
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article