LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wilkinson, C.D.W.; Rahman, M. (2004)
Publisher: Royal Society
Languages: English
Types: Article
Subjects: QC

Classified by OpenAIRE into

mesheuropmc: technology, industry, and agriculture, fungi, stomatognathic system, macromolecular substances, food and beverages
Dry etching is an important process for micro- and nanofabrication. Sputtering effects can arise in two contexts within a dry-etch process. Incoming ions cause removal of volatile products that arise from the interaction between the dry-etch plasma and the surface to be etched. Also, the momentum transfer of an incoming ion can cause direct removal of the material to be etched, which is undesirable as it can cause electrical or optical damage to the underlying material. This is largely avoided in dry-etch processes by use of reactive chemistries, although in some processes this component of the etching can be significant. Etch processes, both machine type and possible etch chemistries, are reviewed. Methods of characterizing the electrical and optical damage related to ion impact at the substrate are described. The use of highly reactive chemistries and molecular constituents within the plasma is best for reducing the effects of damage.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Bousetta, A., van den Berg, J. A., Valizedah, R., Armour, D. G. & Zalm, P. C. 1991 Ultra low energy (100-2000 eV) boron implantation into crystalline and silicon-preamorphized silicon. Nucl. Instrum. Meth. Phys. Res. B 55, 565.
    • Chapman, B. N. 1980 Glow discharge processes: sputtering and plasma etching. Wiley.
    • Cheung, R., Thoms, S., Beaumont, S. P., Doughty, G., Law, V. & Wilkinson, C. D. W. 1987 Reactive ion etching of GaAs using a mixture of methane and hydrogen. Electron. Lett. 23, 857-859.
    • Coburn, J. W. & Winters, H. F. 1979 Ion-assisted and electron-assisted gas-surface chemistry: important effects in plasma-etching. J. Appl. Phys. 50, 3189-3196.
    • Deng, L. G., Rahman, M. & Wilkinson, C. D. W. 2000 Enhanced damage due to light in lowdamage reactive-ion etching processes. Appl. Phys. Lett. 76, 2871-2873.
    • Foad, M. A., Wilkinson, C. D. W., Dunscomb, C. & Williams, R. H. 1992 CH4/H2-a universal reactive ion etch for II-VI semiconductors. Appl. Phys. Lett. 60, 2531-2533.
    • Germann, R., Forchel, A., Bresch, M. & Meier, H. P. 1989 Energy-dependence and depth distribution of dry etching-induced damage in III/V semiconductor heterostructures. J. Vac. Sci. Technol. B 7, 1475-1478.
    • Johnson, N. P., Foad, M. A., Murad, S., Holland, M. C. & Wilkinson, C. D. W. 1994 Deep levels induced by SiCl4 reactive ion etching in GaAs. Mater. Res. Soc. Symp. Proc. 325, 443-448.
    • Khamsehpour, B., Wilkinson, C. D. W. & Chapman, J. N. 1995 Fabrication of NiFe thin-film elements by dry-etching using CH4/H2/O2. Appl. Phys. Lett. 67, 3194-3196.
    • Knoedler, C. M., Osterling, L. & Heiblum, H. 1989 Inert-gas reactive ion etching damage to GaAs using inverted heterojunctions. J. Appl. Phys. 65, 1800-1802.
    • Kuo, Y. (ed.) 1999 Plasma processing. IBM J. Res. Develop. 43, 1-215.
    • Layadi, N., Colonell, J. I. & Lee, J. T.-C. 1999 An introduction to plasma etching for VLSI circuit technology. Bell Labs Tech. J. 4, 155.
    • Lishan, D. G., Wong, H. F., Green, D. L., Hu, E. L. & Merz, J. L. 1988 Dry etch induced damage in GaAs investigated using Raman-scattering spectroscopy. J. Vac. Sci. Technol. B 7, 556-560.
    • Manos, D. N. & Flann, D. L. 1989 Plasma etching-an introduction. Academic.
    • Nollebrugge, U., Klug, M. & Gardus, G. 1985 A novel process for reactive ion etching in InP using CH4/H2. In Gallium Arsenide and Related Compounds 1985. Proc. 12th Int. Symp. on Gallium Arsenide and Related Compounds, Karuizawa, Japan, 23-26 September 1985 (ed. M. Fujimoto). Institute of Physics Conference Series, vol. 79, pp. 367-387. Bristol: Institute of Physics Publishing.
    • Pang, S. W. 1986 Surface damage on GaAs induced by reactive ion etching and sputter etching. J. Electrochem. Soc. 133, 784-787.
    • Rahman, M. 1995a Channelling and diffusion in dry-etch damage. J. Appl. Phys. 82, 2215-2224.
    • Rahman, M. 1995b Quantum heat bath theory of dechannelling. Phys. Rev. B 52, 3383-3389.
    • Rahman, M., Johnson, N. P., Foad, M. A., Long, A. R., Holland, M. C. & Wilkinson, C. D. W. 1992 Model for conductance in dry-etch damaged N-GaAs structures. Appl. Phys. Lett. 61, 2335-2337.
    • Rahman, M., Deng, L. G., Wilkinson, C. D. W. & van den Berg, J. A. 2001 Studies of damage in low-power reactive-ion etching of III-V semiconductors. J. Appl. Phys. 89, 2096-2108.
    • Smith, R., Shaw, M., Webb, R. P. & Foad, M. A. 1998 Ultrashallow junctions in Si using decaborane? A molecular dynamics simulation study. J. Appl. Phys. 83, 3148-3152.
    • Stoffel, N. G. 1992 Molecular-dynamics simulations of deep penetration by channelled ions during low-energy ion-bombardment of III-V semiconductors. J. Vac. Sci. Technol. B 10, 651-658.
    • Wang, P. D., Foad, M. A., Sotomayor-Torres, C. M., Thoms, S., Watt, M., Cheung, R., Wilkinson, C. D. W. & Beaumont, S. P. 1992 Raman-scattering of coupled longitudinal optical phonon-plasmon modes in dry etched n+-GaAs. J. Appl. Phys. 71, 3754-3759.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    40
    40%
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Download from

Cite this article