Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Abdulrazzaq, N.N.; Al-Sabbagh, B.H.; Rees, J.M.; Zimmerman, W.B. (2016)
Publisher: American Chemical Society
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Fluid Dynamics, Condensed Matter::Soft Condensed Matter
(Graph Presented) A computational model of a single gas microbubble immersed in a liquid of ethanol-water mixture is developed and solved numerically. This complements earlier binary distillation experiments in which the ethanol-water mixture is stripped by hot air microbubbles achieving around 98% vol. ethanol from the azeotropic mixture. The proposed model has been developed using Galerkin finite element methods to predict the temperature and vapor content of the gas microbubble as a function of its residence time in the liquid phase. This model incorporates a novel rate law that evolves on a time scale related to the internal mixing of microbubbles of 10-3s. The model predictions of a single bubble were shown to be in very good agreement with the existing experimental data, demonstrating that the ratio of ethanol to water in the microbubble regime are higher than the expected ratios that would be consistent with equilibrium theory for all initial bubble temperatures and all liquid ethanol mole fractions considered and within the very short contact times appropriate for thin liquid layers. Our previous experiments showed a decrease in the liquid temperature with decreasing liquid depth in the bubble tank, an increase in the outlet gas temperature with decreasing liquid depth, and an improvement in the stripping efficiency of ethanol upon decreasing the depth of the liquid mixture and increasing the temperature of the air microbubbles, all of which are consistent with the predictions of the computational model.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Dias, M. O. S.; Ensinas, A. V.; Nebra, S. A.; Maciel Filho, R.; Rossell, C. E. V; Maciel, M. R. W. Production of bioethanol and other bio-based materials from sugarcane bagasse: Integration to conventional bioethanol production process. Chem. Eng. Res. Des. 2009, 87, 1206.
    • (2) Quijada-Maldonado, E.; Aelmans, T. A. M.; Meindersma, G. W.; de Haan, A. B. Pilot plant validation of a rate-based extractive distillation model for water-ethanol separation with the ionic liquid [emim][DCA] as solvent. Chem. Eng. J. 2013, 223, 287.
    • (3) Oliveira, F. S.; Pereiro, A. B.; Rebelo, L. P. N.; Marrucho, I. M.
    • Green Chem. 2013, 15, 1326.
    • (4) Pacheco-Basulto, J. A.; Hernandez-McConville, D.; BarrosoMunoz, F. O.; Hernandez, S.; Segovia-Hernandez, J. G.; CastroMontoya, A. J.; Bonilla-Petriciolet, A. Purification of bioethanol using extractive batch distillation: Simulation and experimental studies.
    • Chem. Eng. Process. 2012, 61, 30.
    • (5) Onuki, S.; Koziel, J. A.; Jenks, W. S.; Cai, L.; Rice, S.; Leeuwen, J.
    • H. V. Ethanol purification with ozonation, activated carbon adsorption, and gas stripping. Sep. Purif. Technol. 2015, 151, 165.
    • (6) Julka, V.; Chiplunkar, M.; O'Young, L. Selecting Entrainers for Azeotropic Distillation. Chem. Eng. Prog. 2009, 47.
    • (7) Corderi, S.; Gonzalez, B.; Calvar, N.; Gomez, E. Ionic liquids as solvents to separate the azeotropic mixture hexane/ethanol. Fluid Phase Equilib. 2013, 337, 11.
    • (8) Francis, M. J.; Pashley, R. M. Application of a bubble column for evaporative cooling and a simple procedure for determining the latent heat of vaporization of aqueous salt solutions. J. Phys. Chem. B 2009, 113, 9311.
    • (9) Ribeiro, C. P.; Lage, P. L. C. Direct-contact evaporation in the homogeneous and heterogeneous bubbling regimes. Part I: experimental analysis. Int. J. Heat Mass Transfer 2004, 47, 3825.
    • (10) Ribeiro, C. P.; Lage, P. L. C. Gas-Liquid Direct-Contact Evaporation: A Review. Chem. Eng. Technol. 2005, 28, 1081.
    • (11) Ribeiro, C. P.; Borges, C. P.; Lage, P. L. C. Modelling of directcontact evaporation using a simultaneous heat and multicomponent mass-transfer model for superheated bubbles. Chem. Eng. Sci. 2005, 60, 1761.
    • (12) Ribeiro, C. P.; Borges, C. P.; Lage, P. L. C. Sparger effects during the concentration of synthetic fruit juices by direct-contact evaporation. J. Food Eng. 2007, 79, 979.
    • (13) Ribeiro, C. P.; Lage, P. L. C. Direct-contact evaporation in the homogeneous and heterogeneous bubbling regimes. Part II: dynamic simulation. Int. J. Heat Mass Transfer 2004, 47, 3841.
    • (14) Jacobs, H. R. Direct-Contact heat transfer for process technologies. J. Heat Transfer 1988, 110, 1259.
    • (15) Kang, Y. H.; Kim, N. J.; Hur, B. K.; Kim, C. B. A numerical study on heat transfer characteristics in a spray column direct contact heat exchanger. KSME Int. J. 2002, 16, 344.
    • (16) Díaz, M. E.; Iranzo, A.; Cuadra, D.; Barbero, R.; Montes, F. J.; Galań, M. A. Numerical simulation of the gas−liquid flow in a laboratory scale bubble column. Chem. Eng. J. 2008, 139, 363.
    • (17) Zimmerman, W. B.; Tesar, V.; Butler, S.; Bandulasena, H. C. H.
    • Microbubble Generation. Recent Pat. Eng. 2008, 2, 1.
    • (18) Zimmerman, W. B.; Hewakandamby, B. N.; Tesar,̌ V.; Bandulasena, H. C. H.; Omotowa, O. A. On the design and simulation of an airlift loop bioreactor with microbubble generation by fluidic oscillation. Food Bioprod. Process. 2009, 87, 215.
    • (19) Zimmerman, W. B.; Tesar,̌ V.; Bandulasena, H. C. H. Towards energy efficient nanobubble generation with fluidic oscillation. Curr.
    • Opin. Colloid Interface Sci. 2011, 16, 350.
    • (20) Bredwell, M. D.; Worden, R. M. Mass-transfer properties of microbubbles. 1. Experimental studies. Biotechnol. Prog. 1998, 14, 31.
    • (21) Worden, R. M.; Bredwell, M. D. Mass-Transfer Properties of Microbubbles. 2. Analysis Using a Dynamic Model. Biotechnol. Prog.
    • (22) Zimmerman, W. B.; Al-Mashhadani, M. K. H.; Bandulasena, H.
    • C. H. Evaporation dynamics of microbubbles. Chem. Eng. Sci. 2013, 101, 865.
    • (23) Tesar,̌ V.; Hung, C. H.; Zimmerman, W. B. No-moving-part hybrid-synthetic jet actuator. Sens. Actuators, A 2006, 125, 159.
    • (24) Tesar,̌ V. Paradox” of flow reversal caused by protective wall-jet in a pipe. Chem. Eng. J. 2007, 128, 141.
    • (25) Tesar,̌ V.; Bandalusena, H. C. H. Bistable diverter valve in microfluidics. Exp. Fluids 2011, 50, 1225.
    • (26) Abdulrazzaq, N.; Al-Sabbagh, B.; Rees, J. M.; Zimmerman, W. B.
    • Separation of azeotropic mixtures using air microbubbles generated by fluidic oscillation. AIChE J. 2016, 62, 1192.
    • (27) Yu, Z.; Fan, L. S. Direct simulation of the buoyant rise of bubbles in infinite liquid using level set method. Can. J. Chem. Eng.
    • (28) Assael, M. J.; Trusler, J. P. M.; Tsolakis, T. F. Thermophysical properties of fluids; Imperial College Press: London, 1996.
    • (29) Khattab, I. S.; Bandarkar, F.; Fakhree, M. A. A.; Jouyban, A.
    • Density, viscosity, and surface tension of water+ethanol mixtures from 293 to 323K. Korean J. Chem. Eng. 2012, 29, 812.
    • (30) Hill, M. J. M. On a Spherical Vortex. Proc. R. Soc. London 1894, 55, 219.
    • (31) Panton, R. L. Incompressible Flow; John Wiley & Sons: New York, 1984.
    • (32) Lamb, H. Hydrodynamics, 6th ed. (printed 1994); Cambridge University Press, 1879.
    • (33) Campos, F.; Lage, P. L. Heat and mass transfer modeling during the formation and ascension of superheated bubbles. Int. J. Heat Mass Transfer 2000, 43, 2883.
    • (34) Cui, X.; Li, X.; Sui, H.; Li, H. Computational fluid dynamics simulations of direct contact heat and mass transfer of a multicomponent two-phase film flow in an inclined channel at subatmospheric pressure. Int. J. Heat Mass Transfer 2012, 55, 5808.
    • (35) MacInnes, J. M.; Pitt, M. J.; Priestman, G. H.; Allen, R. W. K.
    • Eng. Sci. 2012, 69, 304.
    • (36) Rivier, C. A.; García-Payo, M. C.; Marison, I. W.; Von Stockar, U. Separation of binary mixtures by thermostatic sweeping gas membrane distillation - I. Theory and simulations. J. Membr. Sci. 2002, 201, 1.
    • (37) Himus, G. W.; Hinchley, A. R. S. M. The effect of a current of air on the rate of evaporation of water below the boiling point. J. Soc.
    • Chem. Ind., London 1924, 43, 840.
    • (38) Ubal, S.; Harrison, C. H.; Grassia, P.; Korchinsky, W. J.
    • Sci. 2010, 65, 2934.
    • (39) Ubal, S.; Grassia, P.; Harrison, C. H.; Korchinsky, W. J.
    • Numerical simulation of multi-component mass transfer in rigid or circulating drops: Multi-component effects even in the presence of weak coupling. Colloids Surf., A 2011, 380, 6.
    • (40) Mellan, I.; Flick, E. W. Industrial Solvents Handbook, revised 6th ed.; Noyes Publications, 1998.
    • (41) Hanotu, J.; Bandulasena, H.C. H.; Chiu, T. Y.; Zimmerman, W.
    • B. Oil emulsion separation with fluidic oscillator generated microbubbles. Int. J. Multiphase Flow 2013, 56, 119.
    • (42) Hanotu, J.; Bandulasena, H. C. H.; Zimmerman, W. B.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article