LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.; Quigley, David; Gebauer, Denis (2011)
Publisher: Nature Publishing Group
Journal: Nature Communications
Languages: English
Types: Article
Subjects: QD, Article
ddc: ddc:540
Calcium carbonate is an abundant substance that can be created in several mineral forms by the reaction of dissolved carbon dioxide in water with calcium ions. Through biomineralization, organisms can harness and control this process to form various functional materials that can act as anything from shells through to lenses. The early stages of calcium carbonate formation have recently attracted attention as stable prenucleation clusters have been observed, contrary to classical models. Here we show, using computer simulations combined with the analysis of experimental data, that these mineral clusters are made of an ionic polymer, composed of alternating calcium and carbonate ions, with a dynamic topology consisting of chains, branches and rings. The existence of a disordered, flexible and strongly hydrated precursor provides a basis for explaining the formation of other liquid-like amorphous states of calcium carbonate, in addition to the non-classical behaviour during growth of amorphous calcium carbonate.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Belcher, A. M. et al. Control of crystal phase switching and orientation by soluble mollusc-shell proteins. Nature 381, 56-58 (1996).
    • 2. Aizenberg, J., Tkachenko, A., Weiner, S., Addadi, L. & Hendler, G. Calcitic microlenses as part of the photoreceptor system in brittlestars. Nature 412, 819-822 (2001).
    • 3. Chen, T., Neville, A. & Yuan, M. Calcium carbonate scale formation-assessing the initial stages of precipitation and deposition. J. Petrol. Sci. Eng. 46, 185-194 (2005).
    • 4. Matter, J. M. & Kelemen, P. B. Permanent storage of carbon dioxide in geological reservoirs by mineral carbonation. Nat. Geosci. 2, 837-841 (2009).
    • 5. Beniash, E., Aizenberg, J., Addadi, L. & Weiner, S. Amorphous calcium carbonate transforms into calcite during sea urchin larval spicule growth. Proc. Roy. Soc. Lond. 264B, 461-465 (1997).
    • 6. Radha, A. V., Forbes, T. Z., Killian, C. E., Gilbert, P. U. P. A. & Navrotsky, A. Transformation and crystallization energetics of synthetic and biogenic amorphous calcium carbonate. Proc. Natl Acad. Sci. USA 107, 16438-16443 (2010).
    • 7. Rodriguez-Blanco, J. D., Shaw, S. & Benning, L. G. Th e kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 3, 265-271 (2011).
    • 8. Gebauer, D., Völkel, A. & Cölfen, H. Stable prenucleation calcium carbonate clusters. Science 322, 1819-1822 (2008).
    • 9. Pouget, E. M. et al. Th e initial stages of template-controlled CaCO3 formation revealed by Cryo-TEM. Science 323, 1455-1458 (2009).
    • 10. Meldrum, F. C. & Sears, R. P. Now you see them. Science 322, 1802-1803 (2008).
    • 11. Tribello, G. A., Bruneval, F., Liew, C. & Parrinello, M. A molecular dynamics study of the early stages of calcium carbonate growth. J. Phys. Chem. B 113, 11680-11687 (2009).
    • 12. Raiteri, P., Gale, J. D., Quigley, D. & Rodger, P. M. Derivation of an accurate force-fi eld for simulating the growth of calcium carbonate from aqueous solution: a new model for the calcite-water interface. J. Phys. Chem. C 114, 5997-6010 (2010).
    • 13. Raiteri, P. & Gale, J. D. Water is the key to non-classical nucleation of amorphous calcium carbonate. J. Am. Chem. Soc. 132, 17623-17634 (2010).
    • 14. Greenwald, I. Th e dissociation of calcium and magnesium carbonates and bicarbonates. J. Biol. Chem. 141, 789-796 (1941).
    • 15. Gebauer, D. et al. Proto-calcite and proto-vaterite in amorphous calcium carbonates. Angew. Chem. Int. Ed. 49, 8889-8891 (2010).
    • 16. Wolf, S. E. et al. Carbonate-coordinated metal complexes precede the formation of liquid amorphous mineral emulsions of divalent metal carbonates. Nanoscale 3, 1158-1165 (2011).
    • 17. Kohn, J. E. et al. Random-coil behavior and the dimensions of chemically unfolded proteins. Proc. Natl Acad. Sci. USA 101, 12491-12496 (2004).
    • 18. Plummer, L. N. & Busenberg, E. Th e solubilities of calcite, aragonite and vaterite in CO2-H2O solutions between 0 and 90 °C, and an evaluation of the aqueous model for the system CaCO3-CO2-H2O. Geochim. Cosmochim. Acta 46, 1011-1040 (1982).
    • 19. Schröder, D. et al. Direct observation of triple ions in aqueous solutions of nickel(II) sulfate: a molecular link between the gas phase and bulk behavior. J. Am. Chem. Soc. 133, 2444-2451 (2011).
    • 20. Redington, R. L. Infrared absorbance of hydrogen fl uoride oligomers. J. Phys. Chem. 86, 561-563 (1982).
    • 21. Enomoto, T., Nakamori, Y., Matsumoto, K. & Hagiwara, R. Ion-ion interactions and conduction mechanisms of highly conductive fl uorohydrogenate ionic liquids. J. Phys. Chem. C 115, 4324-4332 (2011).
    • 22. Lehn, J.- M. Supramolecular polymer chemistry-scope and perspectives. Polymer Intl. 51, 825-839 (2002).
    • 23. de Greef, T. F. A. & Meijer, E. W. Supramolecular polymers. Nature 453, 171-173 (2008).
    • 24. Gale, J. D., Raiteri, P. & van Duin, A. C. T. A reactive force fi eld for aqueouscalcium carbonate systems. Phys. Chem. Chem. Phys. 13, 16666-16679 (2011).
    • 25. Ohtaki, H. & Radnai, T. Structure and dynamics of hydrated ions. Chem. Rev. 93, 1157-1204 (1993).
    • 26. Metzler, R. A., Tribello, G. A., Parrinello, M. & Gilbert, P. U. P. A. Asprich peptides are occluded in calcite and permanently disorder biomineral crystals. J. Am. Chem. Soc. 132, 11585-11591 (2010).
    • 27. Hamm, L. M., Wallace, A. F. & Dove, P. M. Molecular dynamics of ion hydration in the presence of small carboxylated molecules and implications for calcifi cation. J. Phys. Chem. B 114, 10488-10495 (2010).
    • 28. Gower, L. B. & Odom, D. J. Deposition of calcium carbonate fi lms by a polymer-induced liquid-precursor (PILP) process. J. Crystal Growth 210, 719-734 (2000).
    • 29. Olszta, M. J., Odom, D. J., Douglas, E. P. & Gower, L. B. A new paradigm for biomineral formation: mineralization via an amorphous liquid-precursor. Connect. Tissue Res. 44, 326-334 (2003).
    • 30. Wolf, S. E., Leiterer, J., Pipich, V., Barrea, R., Emmerling, F. & Tremel, W. Strong stabilization of amorphous calcium carbonate emulsion by ovalbumin: gaining insight into the mechanism of 'polymer-induced liquid precursor' processes. J. Am. Chem. Soc. 133, 12642-12649 (2011).
    • 31. Meldrum, F. C. & Cölfen, H. Controlling mineral morphologies and structures in biological and synthetic systems. Chem. Rev. 108, 4332-4432 (2008).
    • 32. Sommerdijk, N. A. J. M. & de With, G. Biomimetic CaCO3 mineralization using designer molecules and interfaces. Chem. Rev. 108, 4499-4550 (2008).
    • 33. Coleyshaw, E. E., Crump, G. & Grifi th, W. P. Vibrational spectra of the hydrated carbonate minerals ikaite, monohydrocalcite, lansfordite and nesquehonite. Spectrochim. Acta A 59, 2231-2239 (2003).
    • 34. Gale, J. D. GULP: capabilities and prospects. Z. Krist. 220, 552-554 (2005).
    • 35. Zhao, Y. & Truhlar, D. G. Th e M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Th eoret. Chem. Acc. 120, 215-241 (2008).
    • 36. Bylaska, E. J. et al. NWChem, A Computational Chemistry Package for Parallel Computers, Version 5.1.1 (Pacifi c Northwest National Laboratory, 2009).
    • 37. Arakcheeva, A. et al. Th e incommensurately modulated structures of natural natrite at 120 and 293 K from synchrotron X-ray data. Am. Miner. 95, 574-581 (2010).
    • 38. Knobloch, D., Pertlik, F. & Zemann, J. Crystal structure refi nements of buetschlite and eitelite: a contribution to the stereochemistry of trigonal carbonate minerals. Neues Jahrb. Mineral. 230-236 (1980).
    • 39. Grossfi eld, A., Ren, P. & Ponder, J. W. Ion solvation thermodynamics from simulation with a polarisable force fi eld. J. Am. Chem. Soc. 125, 15671-15682 (2003).
    • 40. Plimpton, S. J. Fast parallel algorithms for short-range molecule dynamics. J. Comp. Phys. 117, 1-19 (1995).
    • 41. Torrie, G. M. & Valleau, J. P. Non-physical sampling distribution in Monte Carlo free-energy estimation: umbrella sampling. J. Comp. Phys. 23, 187-199 (1977).
    • 42. Bonomi, M. et al. PLUMED: a portable plugin for free-energy calculations with molecular dynamics. Comput. Phys. Commun. 180, 1961-1972 (2009).
    • 43. Grossfi eld, A. WHAM: the Weighted Histogram Analysis Method, version 2.04,http://membrane.urmc.rochester.edu/content/wham.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article