LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Tran, S.; Garcez, A. (2014)
Publisher: Springer Verlag
Languages: English
Types: Article
Subjects: QA75
This paper presents a method for extracting a low-cost representation from restricted Boltzmann machines. The new representation can be considered as a compression of the network, requiring much less storage capacity while reasonably preserving the network's performance at feature learning. We show that the compression can be done by converting the weight matrix of real numbers into a matrix of three values {-1, 0, 1} associated with a score vector of real numbers. This set of values is similar enough to Boolean values which help us further translate the representation into logical rules. In the experiments reported in this paper, we evaluate the performance of our compression method on image datasets, obtaining promising results. Experiments on the MNIST handwritten digit classification dataset, for example, have shown that a 95% saving in memory can be achieved with no significant drop in accuracy.

Share - Bookmark

Cite this article