LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Petricevic, Marija; Sobala, Lukasz F.; Fernandes, Pearl Z.; Raich, Lluís; Thompson, Andrew James; Ganeko, Bernardo-Seisdedos; Millet, Oscar; Zhu, Sha; Sollogoub, Matthieu; Jiménez-Barbero, Jesús; Rovira, Carme; Davies, Gideon John; Williams, Spencer J. (2017)
Publisher: American Chemical Society
Journal: Journal of the American Chemical Society
Languages: English
Types: Article
Subjects: Article
Inhibitor design incorporating features of the reaction coordinate and transition-state structure has emerged as a powerful approach for the development of enzyme inhibitors. Such inhibitors find use as mechanistic probes, chemical biology tools, and therapeutics. Endo-α-1,2-mannosidases and endo-α-1,2-mannanases, members of glycoside hydrolase family 99 (GH99), are interesting targets for inhibitor development as they play key roles in N-glycan maturation and microbiotal yeast mannan degradation, respectively. These enzymes are proposed to act via a 1,2-anhydrosugar “epoxide” mechanism that proceeds through an unusual conformational itinerary. Here, we explore how shape and charge contribute to binding of diverse inhibitors of these enzymes. We report the synthesis of neutral dideoxy, glucal and cyclohexenyl disaccharide inhibitors, their binding to GH99 endo-α-1,2-mannanases, and their structural analysis by X-ray crystallography. Quantum mechanical calculations of the free energy landscapes reveal how the neutral inhibitors provide shape but not charge mimicry of the proposed intermediate and transition state structures. Building upon the knowledge of shape and charge contributions to inhibition of family GH99 enzymes, we design and synthesize α-Man-1,3-noeuromycin, which is revealed to be the most potent inhibitor (KD 13 nM for Bacteroides xylanisolvens GH99 enzyme) of these enzymes yet reported. This work reveals how shape and charge mimicry of transition state features can enable the rational design of potent inhibitors.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Lombard, V.; Golaconda Ramulu, H.; Drula, E.; Coutinho, P. M.; Henrissat, B. Nucleic Acids Res. 2014, 42, D490=5.
    • (2) Lubas, W. A.; Spiro, R. G. J. Biol. Chem. 1987, 262, 3775=81.
    • (3) Lubas, W. A.; Spiro, R. G. J. Biol. Chem. 1988, 263, 3990=8.
    • (4) Moore, S. E.; Spiro, R. G. J. Biol. Chem. 1990, 265, 13104=12.
    • (5) Moore, S. E.; Spiro, R. G. J. Biol. Chem. 1992, 267, 8443=51.
    • (6) Hiraizumi, S.; Spohr, U.; Spiro, R. G. J. Biol.
    • Chem. 1993, 268, 9927=35.
    • (7) Hakki, Z.; Thompson, A. J.; Bellmaine, S.; Speciale, G.; Davies, G. J.; Williams, S. J. Chem. Eur. J.
    • (8) Cuskin, F.; Lowe, E. C.; Temple, M. J.; Zhu, Y.; Cameron, E. A.; Pudlo, N. A.; Porter, N. T.; Urs, K.; Thompson, A. J.; Cartmell, A.; Rogowski, A.; Hamilton, B.
    • Nature 2015, 517, 165=9.
    • (9) Sinnott, M. L. Chem. Rev. 1990, 90, 1171=202.
    • (10) Zechel, D. L.; Withers, S. G. Acc. Chem. Res.
    • (11) Vocadlo, D. J.; Davies, G. J. Curr. Opin. Chem.
    • Biol. 2008, 12, 539=55.
    • (12) Thompson, A. J.; Williams, R. J.; Hakki, Z.; Alonzi, D. S.; Wennekes, T.; Gloster, T. M.; Songsrirote, K.; Thomas=Oates, J. E.; Wrodnigg, T. M.; Spreitz, J.; Stutz, A. E.; Butters, T. D.; Williams, S. J.; Davies, G. J.
    • Proc. Natl. Acad. Sci. USA 2012, 109, 781=6.
    • (13) Gasman, R. C.; Johnson, D. C. J. Org. Chem.
    • (14) Micheel, F.; Borrmann, D. Chem. Ber. 1960, 93, 1143=7.
    • (15) Kyosaka, S.; Murata, S.; Tanaka, M. Chem.
    • Pharm. Bull. 1983, 31, 3902=5.
    • (16) Speciale, G.; Farren=Dai, M.; Shidmoossavee, F.
    • S.; Williams, S. J.; Bennet, A. J. J. Am. Chem. Soc. 2016, 138, 14012=9.
    • (17) Speciale, G.; Thompson, A. J.; Davies, G. J.; Williams, S. J. Curr. Opin. Struct. Biol. 2014, 28, 1=13.
    • (18) Pauling, L. Am. Sci. 1948, 36, 51=8.
    • (19) Wolfenden, R. Acc. Chem. res. 1972, 5, 10=8.
    • (20) Heightman, T. D.; Vasella, A. T. Angew. Chem.
    • Int. Ed. 1999, 38, 750=70.
    • (21) Gloster, T. M.; Vocadlo, D. J. Nat. Chem. Biol.
    • (22) Spohr, U.; Bach, M.; Spiro, R. G. Can. J. Chem.
    • (23) Alonzi, D. S.; Kukushkin, N. V.; Allman, S. A.; Hakki, Z.; Williams, S. J.; Pierce, L.; Dwek, R. A.; Butters, T. D. Cell. Mol. Life Sci. 2013, 70, 2799=814.
    • (24) Spohr, U.; Bach, M.; Spiro, R. G. Can. J. Chem.
    • (25) Legler, G.; Roeser, K. R.; Illig, H. K. Eur. J.
    • Biochem. 1979, 101, 85=92.
    • (26) Arribas, J. C.; Herrero, A. G.; Martin=Lomas, M.; Canada, F. J.; He, S.; Withers, S. G. Eur. J. Biochem. 2000, 267, 6996=7005.
    • (27) Hill, C. H.; Graham, S. C.; Read, R. J.; Deane, J.
    • E. Proc. Natl. Acad. Sci. USA 2013, 110, 20479=84.
    • (28) Murshudov, G. N.; Skubak, P.; Lebedev, A. A.; Pannu, N. S.; Steiner, R. A.; Nicholls, R. A.; Winn, M. D.; Long, F.; Vagin, A. A. Acta Crystallogr. D 2011, 67, 355= 67.
    • (29) McNicholas, S.; Potterton, E.; Wilson, K. S.; Noble, M. E. M. Acta Crystallogr. D 2011, 67, 386=94.
    • (30) Santana, A. G.; Vadlamani, G.; Mark, B. L.; Withers, S. G. Chem. Commun. 2016, 52, 7943=6.
    • (31) Watts, A. G.; Damager, I.; Amaya, M. L.; Buschiazzo, A.; Alzari, P.; Frasch, A. C.; Withers, S. G. J.
    • Am. Chem. Soc. 2003, 125, 7532=3.
    • (32) von Itzstein, M.; Wu, W.=Y.; Kok, G. B.; Pegg,M.
    • J.; Cameron, J. M.; Penn, C. R. Nature 1993, 363, 418=23.
    • (33) Shidmoossavee, F. S.; Watson, J. N.; Bennet, A. J.
    • J. Am. Chem. Soc. 2013, 135, 13254=7.
    • (34) Liu, H.; Liang, X.; Søhoel, H.; Bülow, A.; Bols, M. J. Am. Chem. Soc. 2001, 123, 5116=7.
    • (35) Goddard=Borger, E. D.; Stick, R. V. Aust. J.
    • Chem. 2007, 60, 211=3.
    • (36) Mayer, T. G.; Schmidt, R. R. Eur. J. Org. Chem.
    • (37) Meloncelli, P. J.; Gloster, T. M.; Money, V. A.; Tarling, C. A.; Davies, G. J.; Withers, S. G.; Stick, R. V.
    • Aust. J. Chem. 2007, 60, 549=65.
    • (38) Davies, G. J.; Planas, A.; Rovira, C. Acc. Chem.
    • Res. 2012, 45, 308=16.
    • (39) Williams, R. J.; Iglesias=Fernandez, J.; Stepper, J.; Jackson, A.; Thompson, A. J.; Lowe, E. C.; White, J. M.; Gilbert, H. J.; Rovira, C.; Davies, G. J.; Williams, S. J.
    • Angew. Chem. Int. Ed. 2014, 53, 1087=91.
    • (40) Tankrathok, A.; Iglesias=Fernández, J.; Williams, R. J.; Pengthaisong, S.; Baiya, S.; Hakki, Z.; Robinson, R.
    • C.; Hrmova, M.; Rovira, C.; Williams, S. J.; Ketudat Cairns, J. R. ACS Catalysis 2015, 5, 6041=51.
    • (41) Warnke, S.; von Helden, G.; Pagel, K. J. Am.
    • Chem. Soc. 2013, 135, 1177=80.
    • (42) Winter, G. J. Appl. Crystallogr. 2010, 43, 186=90.
    • (43) Kabsch, W. Acta Crystallogr., Section D: Biol.
    • Crystallogr. 2010, 66, 125=32.
    • (44) Evans, P. R. Acta Crystallogr. Sect. D 2011, 67, 282=92.
    • (45) Evans, P. R.; Murshudov, G. N. Acta Crystallogr.
    • Sect. D 2013, 69, 1204=14.
    • (46) Emsley, P.; Lohkamp, B.; Scott, W. G.; Cowtan, K. Acta Crystallogr. Sect. D 2010, 66, 486=501.
    • (47) Tickle, I. Acta Crystallogr. Sect. D 2012, 68, 454= 67.
    • (48) Agirre, J.; Davies, G.; Wilson, K.; Cowtan, K.
    • Nat. Chem. Biol. 2015, 11, 303=.
    • (49) Agirre, J.; Iglesias=Fernandez, J.; Rovira, C.; Davies, G. J.; Wilson, K. S.; Cowtan, K. D. Nat. Struct.
    • Mol. Biol. 2015, 22, 833=4.
    • (50) Schanda, P.; Kupče, Ē.; Brutscher, B. Journal of Biomolecular NMR 2005, 33, 199=211.
    • (51) Delaglio, F.; Grzesiek, S.; Vuister, G. W.; Zhu, G.; Pfeifer, J.; Bax, A. J. Biomol. NMR 1995, 6, 277=93.
    • (52) Car, R.; Parrinello, M. Phys. Rev. Lett. 1985, 55, 2471=4.
    • (53) Troullier, N.; Martins, J. L. Phys. Rev. B 1991, 43, 1993=2006.
    • (54) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev.
    • Lett. 1996, 77, 3865=8.
    • (55) Biarnes, X.; Ardevol, A.; Planas, A.; Rovira, C.; Laio, A.; Parrinello, M. J. Am. Chem. Soc. 2007, 129, 10686=93.
    • (56) Raich, L.; Borodkin, V.; Fang, W.; Castro=Lopez, J.; van Aalten, D. M.; Hurtado=Guerrero, R.; Rovira, C. J.
    • Am. Chem. Soc. 2016, 138, 3325=32.
    • (57) Ardèvol, A.; Rovira, C. J. Am. Chem. Soc. 2015, 137, 7528=47.
    • (58) Laio, A.; Parrinello, M. Proc. Natl. Acad. Sci.
    • USA 2002, 99, 12562=6.
    • (59) Tribello, G. A.; Bonomi, M.; Branduardi, D.; Camilloni, C.; Bussi, G. Comput. Phys. Commun. 2014, 185, 604=13.
    • (60) Cremer, D.; Pople, J. A. J. Am. Chem. Soc. 1975, 97, 1354=8.
    • (61) Dowd, M. K.; French, A. D.; Reilly, P. J.
    • Carbohydr. Res. 1994, 264, 1=19.
    • (62) Tiwary, P.; Parrinello, M. J. Phys. Chem. B 2015, 119, 736=42.
    • Page 11 of 11
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

  • BioEntity Site Name
    4ad3Protein Data Bank

Share - Bookmark

Funded by projects

  • ARC | Future Fellowships - Grant ...
  • ARC | Dissecting catalysis and in...
  • EC | GLYCOPOISE
  • RCUK | Dissection of alpha mannos...
  • WT

Cite this article