Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
McRae, KM; Good, B; Hanrahan, JP; McCabe, MS; Cormican, P; Sweeney, T; O'Connell, MJ; Keane, OM (2016)
Publisher: Elsevier
Languages: English
Types: Article

Classified by OpenAIRE into

mesheuropmc: parasitic diseases, animal diseases
Gastrointestinal nematodes are a serious cause of morbidity and mortality in grazing ruminants. The major ovine defence mechanism is acquired immunity, with protective immunity developing over time in response to infection. Nematode resistance varies both within and between breeds and is moderately heritable. A detailed understanding of the genes and mechanisms involved in protective immunity, and the factors that regulate this response, is required to aid both future breeding strategies and the development of effective and sustainable nematode control methods. The aim of this study was to compare the abomasal lymph node transcriptome of resistant and susceptible lambs in order to determine biological processes differentially expressed between resistant and susceptible individuals. Scottish Blackface lambs, with divergent phenotypes for resistance, were challenged with 30,000 Teladorsagia circumcincta larvae (L3), and abomasal lymph nodes recovered at 7 and 14 days post-infection (dpi). High-throughput sequencing of cDNA from the abomasal lymph node was used to quantitatively sample the transcriptome with an average of 32 million reads per sample. A total of 194 and 144 genes were differentially expressed between resistant and susceptible lambs at 7 and 14 dpi respectively. Differentially expressed networks and biological processes were identified using Ingenuity Pathway Analysis. Genes involved in the inflammatory response, attraction of T lymphocytes and binding of leukocytes were more highly expressed in resistant animals at 7 dpi and in susceptible animals at 14 dpi indicating that resistant animals respond to infection earlier than susceptible animals. Twenty-four Single Nucleotide Polymorphisms (SNP) within 11 differentially expressed genes, were tested for association with gastrointestinal nematode resistance in the Scottish Blackface lambs. Four SNP, in 2 genes (SLC30A2 and ALB), were suggestively associated with faecal egg count. In conclusion, a large number of genes were differentially expressed in the abomasal lymph node of resistant and susceptible lambs responding to gastrointestinal nematode challenge. Resistant Scottish Blackface lambs appear to generate an earlier immune response to T. circumcincta. In susceptible lambs this response appears to be delayed. SNP in 2 differentially expressed genes were suggestively associated with faecal egg count indicating that differentially expressed genes may be considered candidate loci for mediating nematode resistance.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Ahmed, A.M., 2013. Immunological and transcriptomic analysis of genetically resistant and susceptible sheep to gastrointestinal nematodes. Doctoral Thesis. University College Dublin, Dublin, Ireland.
    • Allen, J.E., Maizels, R.M., 2011, Diversity and dialogue in immunity to helminths. Nature Reviews Immunology 11, 375-388.
    • Andronicos, N.M., Hunt, P., Windon, R., 2010, Expression of genes in gastrointestinal and lymphatic tissues during parasite infection in sheep genetically resistant or susceptible to Trichostrongylus colubriformis and Haemonchus contortus. International Journal for Parasitology 40, 417-429.
    • Anon, 1986, Modified McMaster Method. In Ministry of Agriculture Fisheries and Food: Manual of Veterinary Parasitological Laboratory Techniques. (Reference book 418) London.
    • Banerji, S., Ni, J., Wang, S.-X., Clasper, S., Su, J., Tammi, R., Jones, M., Jackson, D.G., 1999, LYVE-1, a New Homologue of the CD44 Glycoprotein, Is a Lymph-specific Receptor for Hyaluronan. The Journal of Cell Biology 144, 789-801.
    • Benjamini, Y., Hochberg, Y., 1995, Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. Journal of the Royal Statistical Society. Series B Methodological 57, 289-300.
    • Bishop, S.C., Morris, C.A., 2007, Genetics of disease resistance in sheep and goats. Small Ruminant Research 70, 48-59.
    • Buitkamp, J., Filmether, P., Stear, M.J., Epplen, J.T., 1996, Class I and class II major histocompatibility complex alleles are associated with faecal egg counts following natural, predominantly Ostertagia circumcincta infection. Parasitology Research 82, 693-696.
    • Craig, N.M., Miller, H.R.P., Smith, W.D., Knight, P.A., 2007, Cytokine expression in naïve and previously infected lambs after challenge with Teladorsagia circumcincta. Veterinary Immunology and Immunopathology 120, 47-54.
    • Culhane, A.C., Thioulouse, J., Perrière, G., Higgins, D.G., 2005, MADE4: an R package for multivariate analysis of gene expression data. Bioinformatics 21, 2789-2790.
    • Diez-Tascon, C., Keane, O.M., Wilson, T., Zadissa, A., Hyndman, D.L., McEwan, J.C., Crawford, A.M., 2005, Microarray analysis of selection lines from outbred populations to identify genes involved with nematode parasite resistance in sheep. Physiological Genomics 21, 59-69.
    • Dobin, A., Davis, C.A., Schlesinger, F., Drenkow, J., Zaleski, C., Jha, S., Batut, P., Chaisson, M., Gingeras, T.R., 2013, STAR: ultrafast universal RNA-seq aligner. Bioinformatics 29, 15-21.
    • ENCODE, http://genome.ucsc.edu/ENCODE/protocols/dataStandards/ENCODE_RNAse q_Standards_V1.0.pdf.
    • Gallagher, G., Megjugorac, N.J., Yu, R.Y., Eskdale, J., Gallagher, G.E., Siegel, R., Tollar, E., 2010, The Lambda Interferons: Guardians of the Immune Epithelial Interface and the T-helper 2 Response. Journal of Interferon & Cytokine Research 30, 603-615.
    • Gill, H.S., Altmann, K., Cross, M.L., Husband, A.J., 2000, Induction of T helper 1- and T helper 2-type immune responses during Haemonchus contortus infection in sheep. Immunology 99, 458-463.
    • Gilmour, A.R., Gogel, B.J., Cullis, B.R., Thompson, R. 2009. ASReml User Guide Release 3.0 (Hemel Hempstead, HP1 1ES, UK, VSN International Ltd), pp. 1- 398.
    • González-Navajas, J.M., Lee, J., David, M., Raz, E., 2012, Immunomodulatory functions of type I interferons. Nature Reviews Immunology 12, 125-135.
    • Gossner, A.G., Wilkie, H., Joshi, A., Hopkins, J., 2013, Exploring the abomasal lymph node transcriptome for genes associated with resistance to the sheep nematode Teladorsagia circumcincta. Veterinary Research 44, 68.
    • Gratchev, A., Schmuttermaier, C., Mamidi, S., Gooi, L., Goerdt, S., Kzhyshkowska, J., 2008, Expression of Osteoarthritis Marker YKL-39 is Stimulated by Transforming Growth Factor Beta (TGF-beta) and IL-4 in Differentiating Macrophages. Biomarker Insights 3, 39-44.
    • Hassan, M., Hanrahan, J.P., Good, B., Mulcahy, G., Sweeney, T., 2011, A differential interplay between the expression of Th1/Th2/Treg related cytokine genes in Teladorsagia circumcincta infected DRB1*1101 carrier lambs. Veterinary Research 42, 45.
    • Hein, W.R., Barber, T., Cole, S.-A., Morrison, L., Pernthaner, A., 2004, Long-term collection and characterization of afferent lymph from the ovine small intestine. Journal of Immunological Methods 293, 153-168.
    • Huang, L., Tepaamorndech, S., 2013, The SLC30 family of zinc transporters A review of current understanding of their biological and pathophysiological roles. Molecular Aspects of Medicine 34, 548-560.
    • Jiang, Y., Xie, M., Chen, W., Talbot, R.T., Maddox, J.F., Faraut, T., Wu, C., Muzny, D.M., Li, Y., Zhang, W., Stanton, J.-A., Brauning, R., Barris, W.C., Hourlier, T., Aken, B.L., Searle, S.M.J., Adelson, D.L., Bian, C., Cam, G.R., Chen, Y., Cheng, S., DeSilva, U., Dixen, K., Dong, Y., Fan, G., Franklin, I.R., Fu, S., Fuentes-Utrilla, P., Guan, R., Highland, M.A., Holder, M.E., Huang, G., Ingham, A.B., Jhangiani, S.N., Kalra, D., Kovar, C.L., Lee, S.L., Liu, W., Liu, X., Lu, C., Lv, T., Mathew, T., McWilliam, S., Menzies, M., Pan, S., Robelin, D., Servin, B., Townley, D., Wang, W., Wei, B., White, S.N., Yang, X., Ye, C., Yue, Y., Zeng, P., Zhou, Q., Hansen, J.B., Kristiansen, K., Gibbs, R.A., Flicek, P., Warkup, C.C., Jones, H.E., Oddy, V.H., Nicholas, F.W., McEwan, J.C., Kijas, J.W., Wang, J., Worley, K.C., Archibald, A.L., Cockett, N., Xu, X., Wang, W., Dalrymple, B.P., 2014, The sheep genome illuminates biology of the rumen and lipid metabolism. Science 344, 1168-1173.
    • Kane, M., Yadav, S.S., Bitzegeio, J., Kutluay, S.B., Zang, T., Wilson, S.J., Schoggins, J.W., Rice, C.M., Yamashita, M., Hatziioannou, T., Bieniasz, P.D., 2013, MX2 is an interferon-induced inhibitor of HIV-1 infection. Nature 502, 563- 566.
    • Karasuyama, H., Mukai, K., Obata, K., Tsujimura, Y., Wada, T., 2011, Nonredundant Roles of Basophils in Immunity. Annual Review of Immunology 29, 45-69.
    • Keane, O.M., Dodds, K.G., Crawford, A.M., McEwan, J.C., 2007, Transcriptional profiling of Ovis aries identifies Ovar-DQA1 allele frequency differences between nematode-resistant and susceptible selection lines. Physiological Genomics 30, 253-261.
    • Keane, O.M., Zadissa, A., Wilson, T., Hyndman, D.L., Greer, G.J., McCulloch, A.F., Crawford, A.M., McEwan, J.C., 2006, Gene expression profiling of naïve sheep genetically resistant and susceptible to gastrointestinal nematodes. BMC Genomics 7, 42.
    • Kemper, K.E., Elwin, R.L., Bishop, S.C., Goddard, M.E., Woolaston, R.R., 2009, Haemonchus contortus and Trichostrongylus colubriformis did not adapt to long-term exposure to sheep that were genetically resistant or susceptible to nematode infections. International Journal for Parasitology 39, 607-614.
    • Kemper, K.E., Emery, D.L., Bishop, S.C., Oddy, V.H., Hayes, B.J., Dominik, S., Henshall, J.M., Goddard, M.E., 2011, The distribution of SNP marker effects for faecal worm egg count in sheep, and the feasibility of using these markers to predict genetic merit for resistance to worm infections. Genetics Research 93, 203-219.
    • Knight, J., Hein, W., Pernthaner, A., 2010, The gastrointestinal nematode Trichostrongylus colubriformis down-regulates immune gene expression in migratory cells in afferent lymph. BMC Immunology 11, 51.
    • Knight, P.A., Griffith, S.E., Pate, J.M., Guarneri, L., Anderson, K., Talbot, R.T., Smith, S., Waddington, D., Fell, M., Archibald, A.L., Burgess, S.T.G., Smith, D.W., Miller, H.R.P., Morrison, I.W., 2011, Novel gene expression responses in the ovine abomasal mucosa to infection with the gastric nematode Teladorsagia circumcincta. Veterinary Research 42, 78.
    • Kumar, P., Henikoff, S., Ng, P.C., 2009, Predicting the effects of coding nonsynonymous variants on protein function using the SIFT algorithm. Nature Protocols 4, 1073-1081.
    • Lawrence, C.E., Paterson, J.C., Higgins, L.M., MacDonald, T.T., Kennedy, M.W., Garside, P., 1998, IL-4-regulated enteropathy in an intestinal nematode infection. European Journal of Immunology 28, 2672-2684.
    • Lee, C.G., Da Silva, C.A., Dela Cruz, C.S., Ahangari, F., Ma, B., Kang, M.-J., He, C.- H., Takyar, S., Elias, J.A., 2011, Role of chitin and chitinase/chitinase-like proteins in inflammation, tissue remodeling, and injury. Annual Review of Physiology 73, 479-501.
    • MacKinnon, K.M., Burton, J.L., Zajac, A.M., Notter, D.R., 2009, Microarray analysis reveals difference in gene expression profiles of hair and wool sheep infected with Haemonchus contortus. Veterinary Immunology and Immunopathology 130, 210-220.
    • McRae, K.M., Good, B., Hanrahan, J.P., Glynn, A., O'Connell, M.J., Keane, O.M., 2014, Response to Teladorsagia circumcincta infection in Scottish Blackface lambs with divergent phenotypes for nematode resistance. Veterinary Parasitology 206, 200-207.
    • Melén, K., Keskinen, P., Ronni, T., Sareneva, T., Lounatmaa, K., Julkunen, I., 1996, Human MxB Protein, an Interferon- -inducible GTPase, Contains a Nuclear Targeting Signal and Is Localized in the Heterochromatin Region beneath the Nuclear Envelope. Journal of Biological Chemistry 271, 23478-23486.
    • Montgomery, G.W., Sise, J.A., 1990, Extraction of DNA from sheep white blood cells. New Zealand Journal of Agricultural Research 33, 437-441.
    • Muñoz-Guzmán, M.A., Cuenca-Verde, C., Valdivia-Anda, G., Cuéllar-Ordaz, J.A., Alba-Hurtado, F., 2012, Differential immune response between fundic and pyloric abomasal regions upon experimental ovine infection with Haemonchus contortus. Veterinary Parasitology 185, 175-180.
    • Murata, H., Shimada, N., Yoshioka, M., 2004, Current research on acute phase proteins in veterinary diagnosis: an overview. The Veterinary Journal 168, 28- 40.
    • Nagaraj, S.H., Harsha, H.C., Reverter, A., Colgrave, M.L., Sharma, R., Andronicos, N.M., Hunt, P., Menzies, M., Lees, M.S., Sekhar, N.R., Pandey, A., Ingham, A., 2012, Proteomic analysis of the abomasal mucosal response following infection by the nematode, Haemonchus contortus, in genetically resistant and susceptible sheep. Journal of Proteomics 75, 2141-2152.
    • Pemberton, A.D., Brown, J.K., Craig, N.M., Pate, J.M., McLean, K., Inglis, N.F., Knox, D., Knight, P.A., 2012, Changes in protein expression in the sheep abomasum following trickle infection with Teladorsagia circumcincta. Parasitology 139, 375-385.
    • Pemberton, J.M., Beraldi, D., Craig, B.H., Hopkins, J., 2011, Digital gene expression analysis of gastrointestinal helminth resistance in Scottish blackface lambs. Molecular Ecology 20, 910-919.
    • Pernthaner, A., Cole, S.A., Morrison, L., Hein, W.R., 2005, Increased Expression of Interleukin-5 (IL-5), IL-13, and Tumor Necrosis Factor Alpha Genes in Intestinal Lymph Cells of Sheep Selected for Enhanced Resistance to Nematodes during Infection with Trichostrongylus colubriformis. Infection and Immunity 73, 2175-2183.
    • Riggio, V., Matika, O., Pong-Wong, R., Stear, M.J., Bishop, S.C., 2013, Genomewide association and regional heritability mapping to identify loci underlying variation in nematode resistance and body weight in Scottish Blackface lambs. Heredity 110, 420-429.
    • - , G., Usai, M.G., Casu, S., Moreno, C.R., Matika, O., Bishop, S.C., 2014, A joint analysis to identify loci underlying variation in nematode resistance in three European sheep populations. Journal of Animal Breeding and Genetics, 1-11.
    • Robinson, M.D., McCarthy, D.J., Smyth, G.K., 2010, edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139-140.
    • Robinson, M.D., Oshlack, A., 2010, A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology 11, R25.
    • Rowe, A., Gondro, C., Emery, D., Sangster, N., 2009, Sequential microarray to identify timing of molecular responses to Haemonchus contortus infection in sheep. Veterinary Parasitology 161, 76-87.
    • Safari, E., Fogarty, N.M., Gilmour, A.R., 2005, A review of genetic parameter estimates for wool, growth, meat and reproduction traits in sheep. Livestock Production Science 92, 271-289.
    • , G., Jacquiet, P., Gruner, L., Cortet, J., Sauvé, C., Prevot, F., Grisez, C., Bergeaud, J.P., Schibler, L., Tircazes, A., Francois, D., Pery, C., Bouvier, F., Thouly, J.C., Brunel, J.C., Legarra, A., Elsen, J.M., Bouix, J., Rupp, R., Moreno, C.R., 2012, A genome scan for QTL affecting resistance to Haemonchus contortus in sheep. Journal of Animal Science 90, 4690-4705. , G., Moreno, C., Boitard, S., Ruesche, J., Tircazes-Secula, A., Bouvier, F., Aletru, M., Weisbecker, J.-L., Prevot, F., Bergeaud, J.P., Trumel, C., Grisez, C., Liénard, E., Jacquiet, P., 2014, Functional investigation of a QTL affecting resistance to Haemonchus contortus in sheep. Veterinary Research 45, 68.
    • Sasaki, K., Tungtrakoolsub, P., Morozumi, T., Uenishi, H., Kawahara, M., Watanabe, T., 2014, A single nucleotide polymorphism of porcine MX2 gene provides antiviral activity against vesicular stomatitis virus. Immunogenetics 66, 25-32.
    • Sayre, B.L., Harris, G.C., 2012, Systems genetics approach reveals candidate genes for parasite resistance from quantitative trait loci studies in agricultural species. Animal Genetics 43, 190-198.
    • Scott, M.E., Koski, K.G., 2000, Zinc Deficiency Impairs Immune Responses against Parasitic Nematode Infections at Intestinal and Systemic Sites. The Journal of Nutrition 130, 1412S-1420S.
    • Stear, M.J., Bairden, K., Bishop, S.C., Buitkamp, J., Epplen, J.T., Gostomski, D., McKellar, Q.A., Schwaiger, F.W., Wallace, D.S., 1996a, An ovine lymphocyte antigen is associated with reduced faecal egg counts in fourmonth-old lambs following natural, predominantly Ostertagia circumcincta infection. International Journal for Parasitology 26, 423-428.
    • Stear, M.J., Bishop, S.C., Doligalska, M., Duncan, J.L., Holmes, P.H., Irvine, J., McCririe, L., McKellar, Q.A., Sinski, E., Murray, M.A.X., 1995, Regulation of egg production, worm burden, worm length and worm fecundity by host responses in sheep infected with Ostertagia circumcincta. Parasite Immunology 17, 643-652.
    • Stear, M.J., Park, M., Bishop, S.C., 1996b, The key components of resistance to Ostertagia circumcincta in lambs. Parasitology Today 12, 438-441.
    • Venturina, V.M., Gossner, A.G., Hopkins, J., 2013, The immunology and genetics of resistance of sheep to Teladorsagia circumcincta. Veterinary Research Communications 37, 171-181.
    • Wallace, J.L., Ma, L., 2001, Inflammatory mediators in gastrointestinal defense and injury. Experimental biology and medicine (Maywood, N.J.) 226, 1003-1015.
    • Zaros, L.G., Neves, M.R.M., Benvenuti, C.L., Navarro, A.M.C., Sider, L.H., Coutinho, L.L., Vieira, L.S., 2014, Response of resistant and susceptible Brazilian Somalis crossbreed sheep naturally infected by Haemonchus contortus. Parasitology Research 113, 1155-1161.
    • Zhang, J., Ding, L., Holmfeldt, L., Wu, G., Heatley, S.L., Payne-Turner, D., Easton, J., Chen, X., Wang, J., Rusch, M., Lu, C., Chen, S.-C., Wei, L., CollinsUnderwood, J.R., Ma, J., Roberts, K.G., Pounds, S.B., Ulyanov, A., Becksfort, J., Gupta, P., Huether, R., Kriwacki, R.W., Parker, M., McGoldrick, D.J., Zhao, D., Alford, D., Espy, S., Bobba, K.C., Song, G., Pei, D., Cheng, C., Roberts, S., Barbato, M.I., Campana, D., Coustan-Smith, E., Shurtleff, S.A., Raimondi, S.C., Kleppe, M., Cools, J., Shimano, K.A., Hermiston, M.L., Doulatov, S., Eppert, K., Laurenti, E., Notta, F., Dick, J.E., Basso, G., Hunger, S.P., Loh, M.L., Devidas, M., Wood, B., Winter, S., Dunsmore, K.P., Fulton, R.S., Fulton, L.L., Hong, X., Harris, C.C., Dooling, D.J., Ochoa, K., Johnson, K.J., Obenauer, J.C., Evans, W.E., Pui, C.-H., Naeve, C.W., Ley, T.J., Mardis, E.R., Wilson, R.K., Downing, J.R., Mullighan, C.G., 2012, The genetic basis of early T-cell precursor acute lymphoblastic leukaemia. Nature 481, 157-163.
    • 7 dpi Cell-To-Cell Signaling and Interaction, Cellular Movement, Immune Cell Trafficking
    • 14 dpi Cellular Assembly and Organization, Lipid Metabolism, Small Molecule Biochemistry
    • 7 vs 14 dpi Carbohydrate Metabolism, Small Molecule Biochemistry, Energy Production Developmental Disorder, Drug Metabolism, Energy Production Infectious Disease, Inflammatory Disease, Neurological Disease Cellular Compromise, Hereditary Disorder, Skeletal and Muscular Disorders
    • 7 vs 14 dpi Cell-To-Cell Signaling and Interaction, Cellular Movement, Immune Cell Trafficking Connective Tissue Disorders, Hereditary Disorder, Metabolic Disease Neurological Disease, Developmental Disorder, Endocrine System Disorders Lipid Metabolism, Molecular Transport, Small Molecule Biochemistry
    • 1IPA network score is expressed as the -value).
  • No similar publications.

Share - Bookmark

Cite this article