LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Furmanski, Andrew P.
Languages: English
Types: Doctoral thesis
Subjects: QC
T2K is a long-baseline neutrino oscillation experiment based in Japan. The experiment has already measured the appearance of ⌫e in a ⌫μ beam, and is hoping to measure the appearance of ⌫¯e in a ⌫¯μ beam, which would open the possibility of observing CP-violation in the lepton sector. The charged current quasi-elastic (CCQE) interaction (vμ + n -> μ− + p) is of great importance to T2K as it is expected to make up over 80% of the interactions at the oscillation peak (600 MeV).\ud \ud In recent years it has become clear that the most common model describing CCQE interactions on nuclei, the Relativistic Fermi Gas (RFG) model, is not able to describe low energy data on nuclear targets. An alternative model, the Spectral Function (SF) model, was implemented in the NEUT interaction generator. Relevant uncertainties in this model are identified and evaluated.\ud \ud The charged current quasi-elastic-like cross section is then measured using the T2K near detector, ND280, as a function of muon momentum and angle. This data is then critically compared to the predictions from two implementations of the RFG model, and also to the newly implemented SF model. The total integrated cross section is found to be (4.06 ± 0.757) x 10−39 cm2 nucleon−1. This value is currently in agreement with all three predictions.

Share - Bookmark

Cite this article