LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Clarke, E.; Howe, P.; Taylor, M.; Spencer, P.; Harbord, E.; Murray, R.; Kadkhodazadeh, S.; McComb, D.W.; Stevens, B.J.; Hogg, R.A. (2010)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

arxiv: Condensed Matter::Mesoscopic Systems and Quantum Hall Effect, Condensed Matter::Materials Science, Condensed Matter::Other, Physics::Optics
The dependence of the optical properties of InAs/GaAs quantum dot(QD) bilayers on seed layer growth temperature and second layer InAs coverage is investigated. As the seed layer growth temperature is increased, a low density of large QDs is obtained. This results in a concomitant increase in dot size in the second layer, which extends their emission wavelength, reaching a saturation value of around 1400 nm at room temperature for GaAs-capped bilayers. Capping the second dot layer with InGaAs results in a further extension of the emission wavelength, to 1515 nm at room temperature with a narrow linewidth of 22 meV. Addition of more InAs to high density bilayers does not result in a significant extension of emission wavelength as most additional material migrates to coalesced InAs islands but, in contrast to single layers, a substantial population of regular QDs remains.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1A. E. Zhukov, A. R. Kovsh, N. A. Maleev, S. S. Mikhrin, V. M. Ustinov, A. F. Tsatsul'nikov, M. V. Maximov, B. V. Volovik, D. A. Bedarev, Y. M.
    • Shernyakov, P. S. Kop'ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Appl. Phys. Lett. 75, 1926 1999 .
    • 2E. C. Le Ru, A. J. Bennett, C. Roberts, and R. Murray, J. Appl. Phys. 91, 1365 2002 .
    • 3I. Mukhametzhanov, R. Heitz, J. Zeng, P. Chen, and A. Madhukar, Appl.
    • Phys. Lett. 73, 1841 1998 .
    • 4E. C. Le Ru, P. Howe, T. S. Jones, and R. Murray, Phys. Rev. B 67, 165303 2003 .
    • 5G. Burkard, G. Seelig, and D. Loss, Phys. Rev. B 62, 2581 2000 .
    • 6M. Bayer, P. Hawrylak, K. Hinzer, S. Fafard, M. Korkusinski, Z. R.
    • Wasilewski, O. Stern, and A. Forchel, Science 291, 451 2001 .
    • 7Q. Xie, A. Madhukar, P. Chen, and N. P. Kobayashi, Phys. Rev. Lett. 75, 2542 1995 .
    • 8L. H. Li, M. Rossetti, A. Fiore, and G. Patriarche, Electron. Lett. 42, 638 2006 .
    • 9R. Murray, D. Childs, S. Malik, P. Siverns, C. Roberts, J.-M. Hartmann, and P. Stavrinou, Jpn. J. Appl. Phys., Part 1 38, 528 1999 .
    • 10K. Nishi, H. Saito, S. Sugou, and J.-S. Lee, Appl. Phys. Lett. 74, 1111 1999 .
    • 11V. M. Ustinov, N. A. Maleev, A. E. Zhukov, A. R. Kovsh, A. Y. Egorov, A. V. Lunev, B. V. Volovik, I. L. Krestnikov, Y. O. Musikhin, N. A. Bert, P. S. Kop'ev, Z. I. Alferov, N. N. Ledentsov, and D. Bimberg, Appl. Phys.
    • Lett. 74, 2815 1999 .
    • 12J. Tatebayashi, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 78, 3469 2001 .
    • 13T.-P. Hsieh, P.-C. Chiu, J.-I. Chyi, N.-T. Yeh, W.-J. Ho, W.-H. Chang, and T.-M. Hsu, Appl. Phys. Lett. 87, 151903 2005 .
    • 14N. N. Ledentsov, A. R. Kovsh, A. E. Zhukov, N. A. Maleev, S. S.
    • Lett. 39, 1126 2003 .
    • 15M. Richter, B. Damilano, J.-Y. Duboz, J. Massies, and A. D. Wieck, Appl.
    • Phys. Lett. 88, 231902 2006 .
    • 16D. Guimard, S. Tsukamoto, M. Nishioka, and Y. Arakawa, Appl. Phys.
    • Lett. 89, 083116 2006 .
    • 17P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, E. C. Le Ru, and R.
    • Murray, Phys. Rev. B 64, 235317 2001 .
    • 18P. Frigeri, L. Nasi, M. Prezioso, L. Seravalli, G. Trevisi, E. Gombia, R.
    • Mosca, F. Germini, C. Bocchi, and S. Franchi, J. Appl. Phys. 102, 083506 2007 .
    • 19J. S. Wang, J. F. Chen, J. L. Huang, P. Y. Wang, and X. J. Guo, Appl. Phys.
    • Lett. 77, 3027 2000 .
    • 20D. Leonard, K. Pond, and P. M. Petroff, Phys. Rev. B 50, 11687 1994 .
    • 21P. Howe, E. C. Le Ru, E. Clarke, R. Murray, and T. S. Jones, J. Appl.
    • Phys. 98, 113511 2005 .
    • 22P. B. Joyce, T. J. Krzyzewski, G. R. Bell, B. A. Joyce, and T. S. Jones, Phys. Rev. B 58, R15981 1998 .
    • 23P. B. Joyce, T. J. Krzyzewski, G. R. Bell, T. S. Jones, S. Malik, D. Childs, and R. Murray, Phys. Rev. B 62, 10891 2000 .
    • 24P. B. Joyce, T. J. Krzyzewski, G. R. Bell, and T. S. Jones, Appl. Phys. Lett.
    • 25B. Alloing, C. Zinoni, V. Zwiller, L. H. Li, C. Monat, M. Gobet, G. Buchs, A. Fiore, E. Pelucchi, and E. Kapon, Appl. Phys. Lett. 86, 101908 2005 .
    • 26D. Guimard, H. Lee, M. Nishioka, and Y. Arakawa, Appl. Phys. Lett. 92, 163101 2008 .
    • 27Z. Mi and P. Bhattacharya, J. Appl. Phys. 98, 023510 2005 .
    • 28P. Howe, E. C. Le Ru, E. Clarke, B. Abbey, R. Murray, and T. S. Jones, J.
    • Appl. Phys. 95, 2998 2004 .
    • 29R. Heitz, I. Mukhametzhanov, P. Chen, and A. Madhukar, Phys. Rev. B 58, R10151 1998 .
    • 30L. Seravalli, M. Minelli, P. Frigeri, S. Franchi, G. Guizzetti, M. Patrini, T.
    • Ciabattoni, and M. Geddo, J. Appl. Phys. 101, 024313 2007 .
    • 31I. Daruka and A.-L. Barabási, Phys. Rev. Lett. 79, 3708 1997 .
    • 32S. Tomić, P. Howe, N. M. Harrison, and T. S. Jones, J. Appl. Phys. 99, 093522 2006 .
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article