LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Malde, Sneha; Thomas, C. (Christopher); Wilkinson, G. (Guy); Naik, P. (Paras); Prouve, Claire; Rademacker, Jonas; Libby, J. (James); Nayak, M.; Gershon, T. J.; Briere, R. A. (Roy A.) (2015)
Publisher: Elsevier Science BV
Languages: English
Types: Article
Subjects: QC

Classified by OpenAIRE into

ACM Ref: TheoryofComputation_GENERAL, MathematicsofComputing_GENERAL
Quantum-correlated View the MathML source decays collected by the CLEO-c experiment are used to perform a first measurement of View the MathML source, the fractional CP -even content of the self-conjugate decay D→π+π−π+π−, obtaining a value of 0.737±0.028. An important input to the measurement comes from the use of View the MathML source and View the MathML source decays to tag the signal mode. This same technique is applied to the channels D→π+π−π0 and D→K+K−π0, yielding View the MathML source and View the MathML source, where the first uncertainty is statistical and the second systematic. These measurements are consistent with those of an earlier analysis, based on CP -eigenstate tags, and can be combined to give values of View the MathML source and View the MathML source. The results will enable the three modes to be included in a model-independent manner in measurements of the unitarity triangle angle γ using B∓→DK∓ decays, and in time-dependent studies of CP violation and mixing in the View the MathML source system.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] M. Nayak, et al., First determination of the CP content of D → π +π −π 0 and D → K + K −π 0, Phys. Lett. B 740 (2015) 1, arXiv:1410.3964 [hep-ex].
    • [2] K.A. Olive, et al., Particle Data Group, Review of particle physics, Chin. Phys. C 38 (2014) 090001.
    • [3] R. Aaij, et al., LHCb Collaboration, Search for CP violation in D0 → π +π −π 0 decays with the energy test, Phys. Lett. B 740 (2015) 158, arXiv:1410.4170 [hep-ex].
    • [4] R. Aaij, et al., LHCb Collaboration, Model-independent search for CP violation in D0 → K − K +π −π + and D0 → π −π +π −π + decays, Phys. Lett. B 726 (2013) 623, arXiv:1308.3189 [hep-ex].
    • [5] S. Malde, C. Thomas, G. Wilkinson, Measuring CP violation and mixing in charm with inclusive self-conjugate multibody decay modes, arXiv:1502.04560 [hepph].
    • [6] A. Bondar, A. Poluektov, The use of quantum correlated D0 decays for φ3 measurement, Eur. Phys. J. C 55 (2008) 51, arXiv:0801.0840 [hep-ex].
    • [7] M. Gronau, D. London, How to determine all the angles of the unitarity triangle from Bd0 → D K S and B0s → Dφ, Phys. Lett. B 253 (1991) 483; M. Gronau, D. Wyler, On determining a weak phase from CP asymmetries in charged B decays, Phys. Lett. B 265 (1991) 172.
    • [8] Y. Kubota, et al., CLEO Collaboration, The CLEO II detector, Nucl. Instrum. Methods A 320 (1992) 66; D. Peterson, et al., The CLEO III drift chamber, Nucl. Instrum. Methods A 478 (2002) 142; M. Artuso, et al., Construction, pattern recognition and performance of the CLEO III LiF-TEA RICH detector, Nucl. Instrum. Methods A 502 (2003) 91; R.A. Briere, et al., CLEO-c/CESR-c Taskforces and CLEO-c Collaboration, CLEO-c and CESR-c: a new frontier of weak and strong interactions, Cornell LEPP Report CLNS Report No. 01/1742, 2001.
    • [9] D.J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Methods A 462 (2001) 152.
    • [10] R. Brun, et al., GEANT 3.21, CERN Program Library Long Writeup W5013, unpublished.
    • [11] N. Lowrey, et al., CLEO Collaboration, Determination of the D0 → K −π +π 0 and D0 → K −π +π +π − coherence factors and average strong-phase differences using quantum-correlated measurements, Phys. Rev. D 80 (2009) 031105(R), arXiv:0903.4853 [hep-ex].
    • [12] D.M. Asner, et al., CLEO Collaboration, Determination of the D0 → K +π − relative strong phase using quantum-correlated measurements in e+e− → D0 D¯ 0 at CLEO, Phys. Rev. D 78 (2008) 012001, arXiv:0802.2268 [hep-ex].
    • [13] J. Libby, et al., New determination of the D0 → K −π +π 0 and D0 → K −π +π +π − coherence factors and average strong-phase differences, Phys. Lett. B 731 (2014) 197, arXiv:1401.1904 [hep-ex].
    • [14] H. Albrecht, et al., ARGUS Collaboration, Search for hadronic b → u decays, Phys. Lett. B 241 (1990) 278.
    • [15] T. Skwarnicki, A study of the radiative cascade transitions between the ϒ and ϒ resonances, PhD thesis (Appendix E), Cracow, INP, 1986, DESY F31-86-02.
    • [16] Q. He, et al., CLEO Collaboration, Comparison of D → K S0π and D → KL0π decay rates, Phys. Rev. Lett. 100 (2008) 091801, arXiv:0711.1463 [hep-ex].
    • [17] Y. Amhis, et al., HFAG, Averages of b-hadron, c-hadron, and τ -lepton properties as of summer 2014, arXiv:1412.7515, online updates at http://www. slac.stanford.edu/xorg/hfag.
    • [18] J. Libby, et al., CLEO Collaboration, Model-independent determination of the strong-phase difference between the decays D0 and D¯ 0 → K S0,Lh+h− (h = π , K ) and its impact on the measurement of the CKM angle γ , Phys. Rev. D 82 (2010) 112006, arXiv:1010.2817 [hep-ex].
    • [19] B. Aubert, et al., BaBar Collaboration, Improved measurement of the CKM angle γ in B∓ → D(∗) K (∗)∓ decays with a Dalitz plot analysis of D decays to K 0π +π − and K S0 K + K −, Phys. Rev. D 78 (2008) 034023, arXiv:0804.2089 [hepS ex].
    • [20] P. del Amo Sanchez, et al., BaBar Collaboration, Evidence for direct CP violation in the measurement of the CKM angle γ with B∓ → D(∗) K (∗)∓ decays, Phys. Rev. Lett. 105 (2010) 121801, arXiv:1005.1096 [hep-ex].
    • [21] A. Poluektov, et al., Belle Collaboration, Evidence for direct CP violation in the decay B → D(∗) K , D → K 0π +π − and measurement of the CKM phase φ3, S Phys. Rev. D 81 (2010) 112002, arXiv:1003.3360 [hep-ex].
    • [22] B. Aubert, et al., BaBar Collaboration, Measurement of the Cabibbo-KobayashiMaskawa angle γ in B∓ → D(∗) K ∓ decays with a Dalitz analysis of D0 → K 0π −π +, Phys. Rev. Lett. 95 (2005) 121802, arXiv:hep-ex/0504039. S
    • [23] S. Brisbane, CLEO-c D → K S0/L π +π − binned Dalitz-plot analyses optimised for CKM angle γ measurement and the commissioning of the LHCb front-end electronics, DPhil thesis (Chapter 3), University of Oxford, 2010, CERN-THESIS2010-206.
    • [24] D. Cronin-Hennessey, et al., CLEO Collaboration, Searches for CP violation and π π S wave in the Dalitz-plot analysis of D0 → π +π −π 0, Phys. Rev. D 72 (2005) 031102(R), arXiv:hep-ex/0503052; D. Cronin-Hennessey, et al., CLEO Collaboration, Phys. Rev. D 75 (2007) 119904 (Erratum).
    • [25] B. Aubert, et al., BaBar Collaboration, Measurement of CP violation parameters with a Dalitz plot analysis of B± → Dπ+π−π0 K ±, Phys. Rev. Lett. 99 (2007) 251801, arXiv:hep-ex/0703037.
    • [26] M. Gaspero, B. Meadows, K. Mishra, A. Soffer, Isospin analysis of D0 decay to three pions, Phys. Rev. D 78 (2008) 014015, arXiv:0805.4050 [hep-ex].
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article