LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pearson, K. J.; Shaffrey, L. C.; Methven, J.; Hodges, K. I. (2014)
Publisher: Royal Meteorological Society
Languages: English
Types: Article
Subjects:
Identifiers:doi:10.1002/qj.2428
The ability of the HiGEM climate model to represent high-impact, regional, precipitation events is investigated in two ways. The first focusses on a case study of extreme regional accumulation of precipitation during the passage of a summer extra-tropical cyclone across southern England on 20 July 2007 that resulted in a national flooding emergency. The climate model is compared with a global Numerical Weather Prediction (NWP) model and higher resolution, nested limited area models. While the climate model does not simulate the timing and location of the cyclone and associated precipitation as accurately as the NWP simulations, the total accumulated precipitation in all models is similar to the rain gauge estimate across \ud England and Wales. The regional accumulation over the event is insensitive to horizontal resolution for grid spacings ranging from 90km to 4km.\ud \ud Secondly, the free-running climate model reproduces the statistical distribution of daily precipitation accumulations observed in the England-Wales precipitation record. The model distribution diverges increasingly from the record for longer accumulation periods with a consistent under-representation of more intense multi-day accumulations. This may indicate a lack of low-frequency variability associated with weather regime persistence. Despite this, the overall seasonal and annual precipitation totals from the model are still comparable to those from ERA-Interim.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Alexander L.V., Jones P.D. 2001. Updated precipitation series for the U.K. and discussion of recent extremes. Atmos. Sci. Lett. 1: 142-150.
    • Allan R.P., Soden B.J. 2008. Atmospheric warming and the amplification of precipitation extremes. Science. 321(5895): 1481- 1484. ISSN 1095-9203, doi:10.1126/science.1160787
    • Allen M.R., Ingram W.J. 2002. Constraints on future changes in climate and the hydrologic cycle. Nature. 419: 224-232.
    • Blackburn M., Methven J., Roberts N. 2008. Large-scale context for the UK floods in summer 2007. Weather. 63: 280-288.
    • Catto J.L. 2009. Ph.D. Thesis. Extra-tropical cyclones in HiGEM: climatology, structure and future predictions. University of Reading.
    • Catto J.L., Shaffrey L.C., Hodges, K.I. 2010. Can climate models capture the structure of extratropical cyclones? J. Clim. 23(7): 1621- 1635. ISSN 1520-0442.
    • Chan S.C., Kendon E.J., Fowler H.J., Blenkinsop S., Ferro C.A.T., Stephenson D.B. 2013. Does increasing the spatial resolution of a regional climate model improve the simulated daily precipitation? Clim. Dyn. 41: 1475-1495
    • Davies T., Cullen M.J.P., Malcolm A.J., Mawson M.H., Staniforth A., White A.A., Wood N. 2005. A new dynamical core for the Met Office's global and regional modelling of the atmosphere. Q. J. R. Meteorol. Soc. 131: 1759-1782.
    • Essery R., Best M., Cox P. 2001. MOSES 2.2 Tech. Doc. Hadley Centre Tech. Rep. 30, Met. Office Hadley Centre.
    • Fowler H.J., Ekstro¨m M., Kilsby C.G., Jones P.D. 2005. New estimates of future changes in extreme rainfall across the UK using regional climate model integrations. 1. Assessment of control climate. J. Hydrol. 300: 212-233.
    • Fowler H.J., Ekstro¨m M. 2009. Multi-model ensemble estimates of climate change impacts on UK seasonal precipitation extremes. Int. J. Climatol. 21.11: 1337-1356.
    • Grahame N., Davies M. 2008. Forecasting the exceptional rainfall events of summer 2007 and communication of key messages to Met Office customers. Weather. 63: 268-273.
    • Gregory D., Rowntree P.R. 1990. A mass flux convection scheme with representation of cloud ensemble characteristics and stabilitydependent closure. Mon. Wea. Rev. 118: 1483-1506.
    • Hawcroft M.K., Shaffrey L.C., Hodges K.I., Dacre H.F. 2012. How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett. 39: L24809.
    • Huffman G.J., Adler R.F., Morrissey M., Bolvin D.T., Curtis S., Joyce R., McGavock B., Susskind J. 2001. Global Precipitation at One-Degree Daily Resolution from Multi-Satellite Observations. J. Hydrometeor. 2: 36-50.
    • Kendon E.J., Robers N.M., Senior C.A., Roberts M.J. 2012. Realism of Rainfall in a Very High-Resolution Regional Climate Model. J. Clim. 25: 5791-5806
    • Jones P.D., Reid P.A. 2001. Assessing future changes in extreme precipitation over Britain using regional climate model integrations. Int. J. Climatol. 21.11: 1337-1356.
    • Jung T., Miller M.J., Palmer T.N., Towers P., Wedi N., Achuthavarier D., Adams J.D., Altshuler E.L., Cash B.A., Kinter III J.L., Marx L., Stan C., Hodges K.I. 2012. High-resolution global climate simulations with the ECMWF model in Project Athena: Experimental design, model climate and seasonal forecast skill. J. Clim. 25: 3155- 3172. doi:10.1175/JCLI-D-11-00265.1
    • de Leeuw J., Methven J., Blackburn M. 2014. Evaluation of ERAInterim reanalysis precipitation products using England and Wales observations. Q. J. R. Meteorol. Soc. doi:10.1002/qj.2395.
    • Lean H.W., Clark P.A., Dixon M., Roberts N.M., Fitch A., Forbes R., Halliwell C. 2008. Characteristics of high-resolution versions of the Met Office Unified Model for forecasting convection over the United Kingdom, Mon. Wea. Rev. 136: 3408-3434.
    • Lock A.P., Brown A.R., Bush M.R., Martin G.M., Smith R.N.B. 2000. A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests, Mon. Wea. Rev. 128: 3187-3199.
    • Lorentz E.N. 1969. Atmospheric Predictability as Revealed by Naturally Occurring Analogues, J. Atmos. Sci. 26: 636-646.
    • Mittermaier M., Roberts N., Thompson S.A. 2013. A long-term assessment of precipitation forecast skill using the Fractions Skill Score, Meteorol. Appl. 20: 176-186.
    • Pall P., Allen M.R., Stone D.A. 2007. Testing the Clausius-Clapeyron constraint on changes in extreme precipitation under CO2 warming. Clim. Dyn. 28: 351-363.
    • Pitt M. 2008. Learning lessons from the 2007 floods. The Pitt Review. The Cabinet Office.
    • Prior J., Beswick M. 2008. The exceptional rainfall of 20 July 2007. Weather. 63: 261-267.
    • Schindler A., Maraun D., Toreti A., Luterbacher J. 2012. Changes in the annual cycle of heavy precipitation across the British Isles within the 21st century. Env. Res. Lett. 7: 044029.
    • Shaffrey L.C., Stevens I., Norton W.A., Roberts M.J., Vidale P.L., Harle J.D., Jrrar A., Stevens D.P., Woodage M.J., Demory M.E., Donners J., Clark D.B., Clayton A., Cole J.W., Wilson S.S., Connolley W.M., Davies T.M., Iwi A.M., Johns T.C., King J.C., New A.L., Slingo J.M., Slingo A., Steenman-Clark L., Martin G.M. 2009. U.K. HiGEM: The New U.K. High-Resolution Global Environment Model - Model Description and Basic Evaluation. J. Clim. 22: 1861-1896.
    • Stocker T.F., Qin D., Plattner G.-K., Alexander L.V., Allen S.K., Bindoff N.L., Bron F.-M., Church J.A., Cubasch U., Emori S., Forster P., Friedlingstein P., Gillett N., Gregory J.M., Hartmann D.L., Jansen E., Kirtman B., Knutti R., Krishna Kumar K., Lemke P., Marotzke J., Masson-Delmotte V., Meehl G.A., Mokhov I.I., Piao S., Ramaswamy V., Randall D., Rhein M., Rojas M., Sabine C., Shindell D., Talley L.D., Vaughan D.G. and Xie S.-P., 2013: Technical Summary. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T. F., D. Qin, G.-K. Plattner, M. Tignor, S. K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P. M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
    • Trenberth K.E. 2011. Changes in precipitation with climate change. Clim. Res. 47: 123-138.
    • UK Meteorological Office. 2012. Met Office Integrated Data Archive System (MIDAS) Land and Marine Surface Stations Data (1853-current), [Internet]. NCAS British Atmospheric Data Centre, Available from http://badc.nerc.ac.uk/view/badc.nerc.ac. uk ATOM dataent ukmo-midas.
    • Weller G.B., Cooley D., Sain S.R., Bukovsky M.S., Mearns L.O. 2013. Two case studies on NARCCAP precipitation extremes. J. Geophys. Res. Atmos. 118: 10475-10489. doi:10.1002/jgrd.50824.
    • Williams K.D., Bodas-Salcedo A., De´que´ M., Fermepin S., Medeiros B., Watanabe M., Jakob C., Klein S.A., Senior C.A., Williamson D.L. 2013. The Transpose-AMIP II Experiment and Its Application to the Understanding of Southern Ocean Cloud Biases in Climate Models. J. Clim. 26: 3258-3274. doi:10.1175/JCLI-D-12-00429.1
    • Wilson D.R., Ballard S.P. 1999. A microphysically based precipitation scheme for the UK Meteorological Office Unified Model, Q. J. R. Meteorol. Soc. 125: 1607-1636.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article