LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
King, Andrew W; Herlihy, Patrick E; Cox, Hazel (2014)
Publisher: American Institute of Physics
Languages: English
Types: Article
Subjects: QD0450
Identifiers:doi:10.1063/1.4890658
Non-relativistic quantum chemical calculations of the particle mass, m ± 2 , corresponding to the dissociation threshold in a range of Coulomb three-particle systems of the form {m ± 1 m ± 2 m ∓ 3 } , are performed variationally using a series solution method with a Laguerre-based wavefunction. These masses are used to calculate an accurate stability boundary, i.e., the line that separates the stability domain from the instability domains, in a reciprocal mass fraction ternary diagram. This result is compared to a lower bound to the stability domain derived from symmetric systems and reveals the importance of the asymmetric (mass-symmetry breaking) terms in the Hamiltonian at dissociation. A functional fit to the stability boundary data provides a simple analytical expression for calculating the minimum mass of a third particle required for stable binding to a two-particle system, i.e., for predicting the bound state stability of any unit-charge three-particle system.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1Solving The Schrödinger Equation: Has Everything Been Tried?, edited by P. Popelier (Imperial College Press, London, 2011).
    • 2C. L. Pekeris, Phys. Rev. 112, 1649 (1958).
    • 3A. A. Frost, M. Inokuti, and J. P. Lowe, J. Chem. Phys. 41, 482 (1964).
    • 4H. Cox, S. J. Smith, and B. T. Sutcliffe, Phys. Rev. A 49, 4520 (1994); 49, 4533 (1994).
    • 5A. W. King, F. Longford, and H. Cox, J. Chem. Phys. 139, 224306 (2013).
    • 6F. Arias de Saavedra, E. Buendía, F. J. Gálvez, and A. Sarsa, Eur. Phys. J. D 2, 181 (1998); 13, 201 (2001).
    • 7H. Cox, P. E. Sinclair, S. J. Smith, and B. T. Sutcliffe, Mol. Phys. 87, 399 (1996).
    • 8T. K. Rebane and A. A. Kuzminskii, Opt. Spectrosc. 93, 833 (2002).
    • 9R. N. Hill, J. Math. Phys. 18, 2316 (1977).
    • 10A. Martin, J.-M. Richard, and T. T. Wu, Phys. Rev. A. 46, 3697 (1992).
    • 11E. A. G. Armour, J.-M. Richard, and K. Varga, Phys. Rep. 413, 1 (2005).
    • 12W. H. Press, S. A. Teukolsky, W. T. Vetterling, and B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed. (Cambridge University Press, New York, 2007).
    • 13P. J. Mohr, B. N. Taylor, and D. B. Newell, Rev. Mod. Phys. 84, 1527 (2012), see physics.nist.gov/constants.
    • 14S. E. Jones, Nature (London) 321, 127 (1986).
    • 15K. Ishida, K. Nagamine, T. Matsuzaki, and N. Kawamura, Nucl. Phys. B, Proc. Suppl. 149, 348 (2005).
    • 16D. Balin et al., Phys. Part. Nucl. 42, 185 (2011).
    • 17R. C. Vilão, J. M. Gil, A. Weidinger, H. V. Alberto, J. Piroto Duarte, B. F. O. Costa, N. Ayres de Campos, R. L. Lichti, K. H. Chow, S. P. Cottrell, and S. F. J. Cox, Physica B 404, 888 (2009).
    • 18V. Korobov and J.-M. Richard, Phys. Rev. A 71, 024502 (2005).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article