LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Jenner, Matthew; Afonso, José Pedro; Bailey, Hannah R.; Frank, Sarah; Kampa, Annette; Piel, Jörn; Oldfield, Neil J. (2015)
Publisher: Wiley-VCH Verlag
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: lipids (amino acids, peptides, and proteins)
Type I modular polyketide synthases (PKSs), responsible for the biosynthesis of many biologically active agents, possess a ketosynthase (KS) domain within each module to catalyze chain elongation. \ud Acylation of the KS active site Cys residue is followed by transfer to malonyl-acyl carrier protein, yielding an extended β-ketoacyl chain. To date, the precise contribution of KS selectivity in controlling product fidelity has been unclear. We submitted six KS domains from the trans-acyl transferase PKSs to a mass spectrometry-basedelongation assay, and identified higher substrat selectivity in the elongating step than in preceding acylation. A close correspondence between observed KS selectivity and that predicted by phylogenetic analysis was seen. Our findings provide insights into the mechanism of KS selectivity in this important group of PKSs, can serve as guidance for engineering, and show that targeted mutagenesis can be used to expand the repertoire of acceptable substrates.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • D. J. Newman, G. M. Cragg, J. Nat. Prod. 2007, 70, 461-477.
    • a) R. J. Heath, C. O. Rock, Nat. Prod. Rep. 2002, 19, 581-596; b) Y.-M.
    • Zhang, J. Hurlbert, S. W. White, C. O. Rock, J. Biol. Chem. 2006, 281, 17390-17399.
    • a) J. Staunton, J. K. Weissman, J. Nat. Prod. Rep. 2001, 18, 380-416; b) S.-C. Tsai, B. D. Ames in Complex Enzymes in Microbial Natural Product Biosynthesis, Part B: Polyketides, Aminocoumarins and Carbohydrates (Ed. David A. Hopwood), Academic Press, 2009, pp.
    • 459; c) M. A. Fischbach, C. T. Walsh, Chem. Rev. 2006, 106, 3468- 3496; d) C. Hertweck, Angew. Chem. Int. Ed. 2009, 48, 4688-4716.
    • M. Till, P. R. Race, Biotechnol. Lett. 2014, 36, 877-888.
    • a) S. Kapur et al., Proc. Natl. Acad. Sci. 2012, 109(11), 4110-4115; b) C. Khosla, Y. Tang, A. Y. Chen, N. A. Schnarr, D. E. Cane, Ann. Rev.
    • Biochem. 2007, 76, 195-221.
    • a) J. Piel, Nat. Prod. Rep. 2010, 27, 996-1047; b) Y. Q. Cheng, G. L.
    • Tang, B. Shen. Proc. Natl. Acad. Sci. 2003, 100, 3149-3154.
    • T. Gulder, M. Freeman, J. Piel in Topics in Current Chemistry, Springer Berlin Heidelberg, 2012, pp.1-53.
    • [8] R. V. O'Brien, R. W. Davis, C. Khosla, M. E. Hillenmeyer, J. Antibiot. 2014, 67, 89-97.
    • [9] K. Watanabe, C. C. C. Wang, C. N. Boddy, D. E. Cane, C. J. Khosla, J. Biol. Chem. 2003, 278, 42020-42026.
    • [10] B. Busch et al. Angew. Chem. Int. Ed. 2013, 52, 5285-5289.
    • [11] a) H. G. Menzella et al, Nat. Biotechnol. 2005, 23, 1171-1176; b) S. Murli et al. Appl. Environ. Microbiol. 2005, 71, 4503-4509; c) J. R. Jacobsen, C. R. Hutchinson, D. E. Cane, C. Khosla, Science, 1997, 277, 367-369.
    • [12] a) S. Dutta et al, Nature 2014, 510(7506), 512-517; b) J. R. Whicher et al, Nature 2014, 510(7506), 560-564.
    • [13] T. Nguyen et al, Nat. Biotechnol. 2008, 26, 225-233.
    • [14] a) M. Jenner et al, Angew. Chem. Int. Ed. 2013, 52, 1143-1147; b) C. Kohlhaas et al, Chem. Sci. 2013, 4, 3212-3217.
    • [15] a) J. Moldenhauer, X. H. Chen, R. Borriss, J. Piel, Angew. Chem. Int. Ed. 2007, 46, 8195-8197; b) M. Bielitza, J. Pietruszka, Angew. Chem. Int. Ed. 2013, 52, 10960-10985; c) K. M. Fisch et al, Nat. Chem. Biol. 2009, 5, 494-501.
    • [16] L. Gu et al, Science 2007, 318, 970-974.
    • [17] a) B. Kusebauch, N. Brendel, H. Kirchner, H.-M. Dahse, C. Hertweck, Chembiochem 2011, 12, 2284-2288; b) P. Pöplau, S. Frank, B. I. Morinaka, J. Piel, Angew. Chem. Int. Ed. 2013, 52(50), 13215-13218.
    • [18] D. C. Gay et al, Structure 2014, 22, 444-451.
    • [19] a) K. Jensen et al, Chem. Biol. 2012, 19(3), 329-339; b) J. Wu et al. ChemBioChem 2008, 9, 1500-1508.
    • [20] B. Busch et al, Angew. Chem. Int. Ed. 2013, 52, 5285-5289.
    • [21] P. J. Bracher, P. W. Snyder, B. R. Bohall, G. M. Whitesides, Origins Life Evol. B. 2011, 41, 399-412.
    • [22] J. Q. Wu, K. Kinoshita, C. Khosla, D. E. Cane, Biochemistry 2004, 43, 16301-16310.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article