LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
James F.J. Bryson; Julia Herrero-Albillos; Florian Kronast; Massimo Ghidini; Simon A.T. Redfern; Gerrit van der Laan; Richard J. Harrison (2014)
Publisher: Elsevier BV
Journal: Earth and Planetary Sciences Letters
Languages: English
Types: Article
Subjects: Space and Planetary Science, Earth and Planetary Sciences (miscellaneous), Geophysics, sub-03, Geochemistry and Petrology
X-ray photoemission electron microscopy (XPEEM) enables natural remanent magnetisation to be imaged with ∼30 nm∼30 nm resolution across a field of view of 5–20 μm. The method is applied to structural features typical of the Widmanstätten microstructure (kamacite – tetrataenite rim – cloudy zone – plessite) in the Tazewell IIICD iron meteorite. Kamacite lamellae and the tetrataenite rim are multidomain, whereas plessite consists of laths of different phases displaying a range of stable magnetisation directions. The cloudy zone (CZ) displays a complex interlocking domain pattern resulting from nanoscale islands of tetrataenite with easy axes distributed along three possible crystallographic directions. Quantitative analysis of the coarse and intermediate CZ was achieved using a combination of image simulations and histogram profile matching. Remanence information was extracted from individual regions of interest ∼400 nm∼400 nm wide, demonstrating for the first time the capability of XPEEM to perform quantitative paleomagnetic analysis at sub-micron length scales. The three tetrataenite easy axis orientations occur with equal probability in the coarse and intermediate CZ, suggesting that spinodal decomposition in these regions was not strongly influenced by internal interaction fields, and that they are suitable candidates for future paleomagnetic studies. The fine CZ shows a strong dominance of one easy axis. This effect is attributed to island–island exchange interactions that render the fine CZ unsuitable for paleomagnetic study. Variations in the relative strength (proportion of dominant easy axis) and direction (direction of dominant easy axis) of a paleomagnetic field can be resolved from different regions of the CZ using XPEEM, raising the prospect of obtaining a time-resolved measurement of the active dynamo period in meteorites originating from the upper unmelted regions of differentiated asteroids (e.g. chondrites, pallasites, mesosiderites).
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Asti, G., Solzi, M., Ghidini, M., Neri, F.M., 2004. Micromagnetic analysis of exchangecoupled hard-soft planar nanocomposites. Phys. Rev. B 69 (17), 174401.
    • Bryson, J.F.J., Church, N.S., Kasama, T., Harrison, R.J., 2014. Nanomagnetic intergrowths in Fe-Ni meteoritic metal: the potential for time-resolved records of planetesimal dynamo fields. Earth Planet. Sci. Lett. 388, 237-248.
    • Chen, L.-Q., 1993. A computer simulation technique for spinodal decomposition and ordering in ternary systems. Scr. Metall. Mater. 29, 683-688.
    • Chen, L.-Q., 1994. Computer simulation of spinodal decomposition in ternary systems. Acta Metall. Mater. 42 (10), 3503-3513.
    • Dunlop, D.J., Ozdemir, O., 1997. Rock Magnetism: Fundamentals to Frontiers. Cambridge University Press.
    • Dwyer, C.A., Nimmo, F., Stevenson, D.J., 2011. A long-lived lunar dynamo driven by continuous mechanical stirring. Nature 479, 212-214.
    • Fu, R.R., Weiss, B.P., Shuster, D.L., Gattacceca, J., Grove, T.L., Suavet, C., Lima, E.A., Li, L., Kuan, A.T., 2012. An ancient core dynamo in asteroid Vesta. Science 338 (6104), 238-241.
    • Garrick-Bethell, I., Weiss, B.P., Shuster, D.L., Buz, J., 2009. Early lunar magnetism. Science 323, 356-359.
    • Goldstein, J., Yang, J., Kotula, P., Michael, J., Scott, E., 2009a. Thermal histories of IVA iron meteorites from transmission electron microscopy of the cloudy zone microstructure. Meteorit. Planet. Sci. 44 (3), 343-358.
    • Goldstein, J.I., Scott, E.R.D., Chabot, N.L., 2009b. Iron meteorites crystallization, thermal history, parent bodies, and origin. Chem. Erde - Geochem. 69 (4), 293-325.
    • Goldstein, J.I., Scott, E.R.D., Winfield, T., Yang, J., 2013. Thermal histories of group IAB and related iron meteorites and comparison with other groups of irons and stony iron meteorites. In: 44th Lunar and Planetary Science Conference.
    • Greenwood, R.C., Franchi, I.A., Jambon, A., Barrat, J.A., Burbine, T.H., 2006. Oxygen isotope variation in stony-iron meteorites. Science 313, 1763-1765.
    • James, P., Eriksson, O., Johansson, B., Abrikosov, I.A., 1999. Calculated magnetic properties of binary alloys between Fe, Co, Ni, and Cu. Phys. Rev. B 59 (1), 419-429.
    • Kneller, E.F., Hawig, R., 1991. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27 (4), 3588-3600.
    • Kotsugi, M., Mitsumata, C., Maruyama, H., Wakita, T., Taniuchi, T., Ono, K., Suzuki, M., Kawamura, N., Ishimatsu, N., Oshima, M., Watanabe, Y., Taniguchi, M., 2010. Novel magnetic domain structure in iron meteorite induced by the presence of L10-FeNi. Appl. Phys. Express 3 (1), 013001.
    • Leroux, H., Doukhan, J.C., Perron, C., 2000. Microstructures of metal grains in ordinary chondrites: implications for their thermal histories. Meteorit. Planet. Sci. 35, 569-580.
    • Lima, E.A., Weiss, B.P., Baratchart, L., Hardin, D.P., Saff, E.B., 2013. Fast inversion of magnetic field maps of unidirectional planar geological magnetization. J. Geophys. Res., Solid Earth 118, 2723-2752.
    • Nolting, F., Scholl, A., Stohr, J., Seo, J., Fompeyrine, J., Slegwart, H., Locquet, J.-P., Anders, S., Luning, J., Fullerton, E., Toney, M., Scheinfein, M., Padmore, H., 2000. Direct observation of the alignment of ferromagnetic spins by antiferromagnetic spins. Nature 405, 767-769.
    • Ohldag, H., Regan, T., Stöhr, J., Scholl, A., Nolting, F., Lüning, J., Stamm, C., Anders, S., White, R., 2001. Spectroscopic identification and direct imaging of interfacial magnetic spins. Phys. Rev. Lett. 87 (24), 247201.
    • Reuter, K., Williams, D., Goldstein, J., 1987. Low temperature phase transformations in the metallic phases of iron and stony-iron meteorites. Geochim. Cosmochim. Acta 52, 617-626.
    • Seol, D., Hu, S., Li, Y., Shen, J., Oh, K., Chen, L., 2003. Computer simulation of spinodal decomposition in constrained films. Acta Mater. 51, 5173-5185.
    • Stohr, J., 1999. Exploring the microscopic origin of magnetic anisotropies with X-ray magnetic circular dichroism (XMCD) spectroscopy. J. Magn. Magn. Mater. 200, 470-497.
    • Stohr, J., Padmore, H., Anders, S., Stammler, T., Scheinfein, M., 1998. Principles of X-ray magnetic dichroism spectromicroscopy. Surf. Rev. Lett. 5 (6), 1297-1308.
    • Tarduno, J.A., Cottrell, R.D., Nimmo, F., Hopkins, J., Voronov, J., Erickson, A., Blackman, E., Scott, E.R.D., Mckinley, R., 2012. Evidence for a dynamo in the main group pallasite parent body. Science 338 (6109), 939-942.
    • Uehara, M., Gattacceca, J., Leroux, H., Jacob, D., van der Beek, C.J., 2011. Magnetic microstructures of metal grains in equilibrated ordinary chondrites and implications for paleomagnetism of meteorites. Earth Planet. Sci. Lett. 306 (3-4), 241-252.
    • van der Laan, G., 2013. Applications of soft X-ray magnetic dichroism. J. Phys. Conf. Ser. 430, 012127.
    • Weiss, B.P., Elkins-Tanton, L.T., 2013. Differentiated planetesimals and the parent bodies of chondrites. Annu. Rev. Earth Planet. Sci. 41 (1), 529-560.
    • Weiss, B.P., Fong, L.E., Vali, H., Lima, E.A., Baudenbacher, F.J., 2008. Paleointensity of the ancient martian magnetic field. Geophys. Res. Lett. 35 (23), L23207.
    • Yang, C.-W., Williams, D.B., Goldstein, J.I., 1997. A new empirical cooling rate indicator for meteorites based on the size of the cloudy zone of the metallic phases. Meteorit. Planet. Sci. 32, 423-429.
  • No related research data.
  • No similar publications.

Share - Bookmark

Published in

  • 0012821X

Funded by projects

  • EC | NANOPALEOMAG

Cite this article