LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Barnett, Lionel; Lizier, Joseph T; Harré, Michael; Seth, Anil K; Bossomaier, Terry (2013)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: TK5105.5
There is growing evidence that for a range of dynamical systems featuring complex interactions between large ensembles of interacting elements, mutual information peaks at order-disorder phase transitions. We conjecture that, by contrast, information flow in such systems will generally peak strictly on the disordered side of a phase transition. This conjecture is verified for a ferromagnetic 2D lattice Ising model with Glauber dynamics and a transfer entropy-based measure of systemwide information flow. Implications of the conjecture are considered, in particular, that for a complex dynamical system in the process of transitioning from disordered to ordered dynamics (a mechanism implicated, for example, in financial market crashes and the onset of some types of epileptic seizures); information dynamics may be able to predict an imminent transition.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1Sackler Centre for Consciousness Science, School of Informatics, University of Sussex, Brighton BN1 9QJ, United Kingdom
    • 2CSIRO Computational Informatics, P.O. Box 76, Epping, New South Wales 1710, Australia
    • 3School of Civil Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia
    • 4Centre for Research in Complex Systems, Charles Sturt University, Panorama Avenue, Bathurst, New South Wales 2795, Australia
    • (Received 3 July 2013; published 24 October 2013)
    • ∥ [1] H. Matsuda, K. Kudo, R. Nakamura, O. Yamakawa, and
    • T. Murata, Int. J. Theor. Phys. 35, 839 (1996). [2] S.-J. Gu, C.-P. Sun, and H.-Q. Lin, J. Phys. A 41, 025002
    • (2008). [3] T. Vicsek, A. Cziro´k, E. Ben-Jacob, I. Cohen, and
    • O. Shochet, Phys. Rev. Lett. 75, 1226 (1995). [4] R. T. Wicks, S. C. Chapman, and R. O. Dendy, Phys. Rev.
    • E 75, 051125 (2007). [5] A. S. Ribeiro, S. A. Kauffman, J. Lloyd-Price, B.
    • Samuelsson, and J. E. S. Socolar, Phys. Rev. E 77,
    • 011901 (2008). [6] J. T. Lizier, S. Pritam, and M. Prokopenko, in Artificial Life
    • (MIT Press, Cambridge, MA, 2011), Vol. 17, pp. 293-314. [7] M. Harre´ and T. Bossomaier, Europhys. Lett. 87, 18009
    • (2009). [8] R. J. Glauber, J. Math. Phys. (N.Y.) 4, 294 (1963). [9] T. Schreiber, Phys. Rev. Lett. 85, 461 (2000). [10] Bold s denotes a state vector of spins and normal/
    • lowercase greek si, denotes individual 1 spins.
    • Capitals S, Si denote random variables. [11] L. Onsager, Phys. Rev. 65, 117 (1944). [12] B. M. Mccoy and T. T. Wu, The Two-Dimensional Ising
    • Model (Harvard University Press, Cambridge, MA, 1973). [13] N. V. Kampen, Stochastic Processes in Physics and
    • Chemistry (Elsevier Science, Amsterdam, 1992). [14] T. M. Cover and J. A. Thomas, Elements of Information
    • Theory (John Wiley & Sons, Hoboken, NJ, 1991), 2nd ed. [15] J. T. Lizier and M. Prokopenko, Eur. Phys. J. B 73, 605
    • (2010). [16] A. Kaiser and T. Schreiber, Physica (Amsterdam) D 166,
    • 43 (2002). [17] H. W. Lau and P. Grassberger, Phys. Rev. E 87, 022128
    • (2013). [18] See Supplemental Material at http://link.aps.org/
    • supplemental/10.1103/PhysRevLett.111.177203 for mathe-
    • matical details. [19] M. Studeny´ and J. Vejnarova´, in Learning in Graphical
    • MA, 1998), pp. 261-298. [20] J. T. Lizier, M. Prokopenko, and A. Y. Zomaya, Chaos 20,
    • 037109 (2010). [21] A. K. Seth, E. Izhikevich, G. N. Reeke, and G. M. Edelman,
    • Proc. Natl. Acad. Sci. U.S.A. 103, 10 799 (2006). [22] J. L. Cambier and M. Nauenberg, Phys. Rev. B 34, 8071
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article