Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Dunne, Peter W.; Lester, Edward; Walton, Richard I. (2016)
Publisher: Royal Society of Chemistry
Languages: English
Types: Article
Subjects: QD
Metal–organic frameworks have emerged as one of the most diverse new families of materials in the past few years. Their hybrid structures, combinations of inorganic and organic moieties, give a wide range of complex architectures with resultant properties that are suitable for numerous important fields, including porosity for molecular sieving and sensing, heterogeneous catalysis, drug delivery, and energy storage. If applications of these materials are to be realised then scalable synthesis is required, taking laboratory batch reactions towards industrial production. Continuous flow reactors offer the most versatile method for scaling their solvothermal synthesis, with the largest range of materials accessible, in high yield, and with control over crystal form.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • H. Furukawa, K. E. Cordova, M. O'Keeffe and O. M. Yaghi, Science, 2013, 341, 1230444 A. Schneemann, V. Bon, I. Schwedler, I. Senkovska, S. Kaskel and R. A. Fischer, Chem. Soc. Rev., 2014, 43, 6062-6096 J. F. Keggin and F. D. Miles, Nature 1936, 137, 577-578 S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L.
    • Ohrstrom, M. O'Keeffe, M. P. Suh and J. Reedijk, Pure Appl. Chem., 2013, 85, 1715- 1724.
    • S. Kitagawa and K. Uemura, Chem. Soc. Rev., 2005, 34, 109-119.
    • S. Bureekaew, S. Shimomura and S. Kitagawa, Science and Technology of Advanced Materials, 2008, 9.
    • G. Férey and C. Serre, Chem. Soc. Rev., 2009, 38, 1380-1399.
    • Rosseinsky, Science, 2010, 329, 1053-1057.
    • H.-C. Zhou, J. R. Long and O. M. Yaghi, Chemical Reviews: Metal-Organic Frameworks Volume 112, Issue 2 Pages 673-1268, 2012.
    • H.-C. Zhou and S. Kitagawa, Metal-Organic Frameworks (MOFs) Themed Issue Chem. Soc. Rev. , 2014, 43, 5415-5418 M. Schröder, ed., Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis, Springer-Verlag Berlin Heidelberg, 2010.
    • D. Farrusseng, ed., Metal-Organic Frameworks: Applications from Catalysis to Gas Storage, Wiley-VCH Verlag, Weinheim, 2011.
    • L. R. MacGillivray and C. M. Lukehart, eds., Metal Organic Frameworks, John Wiley & Sons Ltd, Chichester, 2014.
    • S. Kaskel, ed., The Chemistry of Metal-Organic Frameworks: Synthesis, Characterization, and Applications, Wiley-VCH Verlag, Weinheim, 2016 H. Furukawa, N. Ko, Y. B. Go, N. Aratani, S. B. Choi, E. Choi, A. O. Yazaydin, R.
    • Q. Snurr, M. O'Keeffe, J. Kim and O. M. Yaghi, Science, 2010, 329, 424-428.
    • A. Schoedel, Z. Ji and O. M. Yaghi, Nature Energy, 2016, 1, 16034 S. Lin, C. S. Diercks, Y.-B. Zhang, N. Kornienko, E. M. Nichols, Y. Zhao, A. R.
    • Paris, D. Kim, P. Yang, O. M. Yaghi and C. J. Chang, Science, 2015, 349, 1208-1213.
    • Veber, M. V. Fedin, A. J. Houtepen, M. A. van der Veen, F. Kapteijn, A. Walsh and J. Gascon, Scientific Reports, 2016, 6, 23676 Z. R. Herm, B. M. Wiers, J. A. Mason, J. M. van Baten, M. R. Hudson, P. Zajdel, C.
    • M. Brown, N. Masciocchi, R. Krishna and J. R. Long, Science, 2013, 340, 960-964.
    • S. Krause, V. Bon, I. Senkovska, U. Stoeck, D. Wallacher, D. M. Többens, S. Zander, R. S. Pillai, G. Maurin, F. o.-X. Coudert and S. Kaskel, Nature, 2016, 532, 348-352.
    • M. Gimenez-Marques, T. Hidalgo, C. Serre and P. Horcajada, Coord. Chem. Rev., 2016, 307, 342-360.
    • Vargas-Berenguel, N. Semiramoth, S. Daoud-Mahammed, V. Nicolas, C. Martineau, F. Taulelle, J. Vigneron, A. Etcheberry, C. Serre and R. Gref, Scientific Reports, 2015, 5, 7.
    • R. Xu, W. Pang, J. Yu, Q. Huo and J. Chen, Chemistry of Zeolites and Related Porous Materials, John Wiley & Sons (Asia) Pte Ltd, Singapore, 2007.
    • D. Crawford, J. Casaban, R. Haydon, N. Giri, T. McNally and S. L. James, Chemical Science, 2015, 6, 1645-1649.
    • T. Adschiri, K. Kanazawa and K. Arai, J. Amer. Ceram. Soc., 1992, 75, 1019-1022.
    • Sci., 2004, 59, 2853-2861.
    • L. Zhou, S. Wang, D. Xu and Y. Guo, Ind. Eng, Chem. Res., 2014, 53, 481-493.
    • Ryder, Y. Casamayou-Boucau, L. Morrison and E. H. Lester, Chem. Eng. J., 2016, 289, 433-441.
    • R. I. Gruar, C. J. Tighe and J. A. Darr, Ind. Eng, Chem. Res., 2013, 52, 5270-5281.
    • T. Adschiri, Y.-W. Lee, M. Goto and S. Takami, Green Chemistry, 2011, 13, 1380- 1390.
    • J. Camardese, D. W. Abarbanel, E. McCalla and J. R. Dahn, J. Electrochem. Soc., 2014, 161, A890-A895.
    • D. Wang, I. Belharouak, G. M. Koenig, G. Zhou and K. Amine, J. Mater. Chem., 2011, 21, 9290-9295.
    • Y. Song, J. Hormes and C. S. S. R. Kumar, Small, 2008, 4, 698-711.
    • Kashtiban, J. Sloan, E. Lester and R. I. Walton, Chem. Commun., 2012, 48, 10642- 10644.
    • S. S. Y. Chui, S. M. F. Lo, J. P. H. Charmant, A. G. Orpen and I. D. Williams, Science, 1999, 283, 1148-1150.
    • Commun., 2010, 4962-4964 P. A. Bayliss, I. A. Ibarra, E. Perez, S. Yang, C. C. Tang, M. Poliakoff and M.
    • Schroder, Green Chemistry, 2014, 16, 3796-3802.
    • M. Rubio-Martinez, M. P. Batten, A. Polyzos, K.-C. Carey, J. I. Mardel, K.-S. Lim and M. R. Hill, Scientific Reports, 2014, 4, 5443.
    • M. Taddei, D. A. Steitz, J. A. van Bokhoven and M. Ranocchiari, Chem. Eur. J., 2016, 22, 3245-3249.
    • Lillerud and C. Lamberti, Chem. Mater., 2011, 23, 1700-1718.
    • F. Millange, C. Serre and G. Férey, Chem. Commun., 2002, 822-823.
    • B. R. Pimentel, A. Parulkar, E.-k. Zhou, N. A. Brunelli and R. P. Lively, ChemSusChem, 2014, 7, 3202-3240.
    • A. S. Munn, P. W. Dunne, S. V. Y. Tang and E. H. Lester, Chem. Commun., 2015, 51, 12811-12814.
    • P. M. Schoenecker, G. A. Belancik, B. E. Grabicka and K. S. Walton, AlChE J., 2013, 59, 1255-1262.
    • Sefcik, Chem. Eng. J., 2016, 285, 718-725.
    • L. D'Arras, C. Sassoye, L. Rozes, C. Sanchez, J. Marrot, S. Marre and C. Aymonier, New J. Chem., 2014, 38, 1477-1483.
    • M. Faustini, J. Kim, G.-Y. Jeong, J. Y. Kim, H. R. Moon, W.-S. Ahn and D.-P. Kim, J. Amer. Chem. Soc., 2013, 135, 14619-14626.
    • Jones and S. Nair, Science, 2014, 345, 72-75.
    • Coronas, Chem. Commun., 2015, 51, 11283-11285.
    • Sebastian, C. Tellez and J. Coronas, Journal of Membrane Science, 2015, 476, 277- 285.
    • B. P. Biswal, A. Bhaskar, R. Banerjee and U. K. Kharul, Nanoscale, 2015, 7, 7291- 7298.
    • D. S. Sholl and R. P. Lively, J. Phys. Chem. Lett., 2015, 6, 3437-3444.
    • Sakata and S. Kitagawa, Chem. Commun., 2009, 5097-5099.
    • K. Koh, A. G. Wong-Foy and A. J. Matzger, Chem. Commun., 2009, 6162-6164.
    • S. Waitschat, M. T. Wharmby and N. Stock, Dalton Transactions, 2015, 44, 11235- 11240.
    • J. Kim, D. Kim, B. Veriansyah, J. Won Kang and J.-D. Kim, Mater. Lett., 2009, 63, 1880-1882.
    • J., 2016, 283, 971-977.
    • L. Paseta, B. Seoane, D. Julve, V. Sebastián, C. Téllez and J. Coronas, ACS Applied Materials & Interfaces, 2013, 5, 9405-9410.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects


Cite this article