Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Hommersom, B; Syed, SUAH; Eijkel, GB; Kilgour, DPA; Goodlett, DR; Heeren, RMA (2016)
Publisher: Wiley
Languages: English
Types: Article

Classified by OpenAIRE into

arxiv: Physics::Instrumentation and Detectors, Physics::Fluid Dynamics
Rationale:\ud \ud With the current state of the art detection of ions only taking place under vacuum conditions active pixel detectors that operate under ambient conditions are of particular interest. These detectors are ideally suited to study and characterize the charge distributions generated by ambient ionization sources.\ud \ud Methods:\ud \ud The direct imaging capabilities of the active pixel detector are used to investigate the spatial distributions of charged droplets generated by three ionization sources, named electrospray ionization (ESI), paper spray ionization (PSI) and surface acoustic wave nebulization (SAWN). The ionization spray (ESI/PSI) and ionization plume (SAWN) originating from each source is directly imaged. The effect of source parameters such as spray voltage for ESI and PSI, and the angle of the paper spray tip on the charge distributions is investigated. Two types of SAWN liquid interface, progressive wave (PW) and standing wave (SW) are studied.\ud \ud Results:\ud \ud Direct charge detection under ambient conditions is demonstrated using an active pixel detector. Direct charge distributions are obtained of weak, homogeneous/focussed and dispersed spray plumes by applying low, intermediate and high spray potentials, respectively, for ESI. Spray plume footprints obtained for various angles of PSI shows the possibility to focus the ion beam as a function of the paper angle. Differences between two designs of the SAWN interface are determined. Droplet charge flux changes are illustrated in a way similar to a total ion chromatogram.\ud \ud Conclusions:\ud \ud The use of this active pixel detector allows the rapid characterization and optimization of different ambient ionization sources without the actual use of a mass spectrometer. Valuable illustrations are obtained of changes in spatial distribution and number of charges detected for ESI, PSI and SAWN ion plumes.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Annu. Rev. Biochem. 1969, 38, 289.
    • R. G. Cooks, Z. Ouyang, Z. Takats, J. M. Wiseman. Ambient Mass Spectrometry. Science 2006, 311, 1566.
    • F. P. M. Jjunju, A. Li, A. Badu-Tawiah. In situ analysis of corrosion inhibitors using a portable mass spectrometer with paper spray ionization. Analyst 2013, 138, 3740.
    • Phys. Chem. 1984, 88, 4451.
    • Z. Takáts, J. M. Wiseman, B. Gologan, R. G. Cooks. Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 2004, 306, 471.
    • M. Kurosawa, T. Watanabe, A. Futami, T. Higuchi. Surface acoustic wave atomizer. Sensors Actuators A Phys. 1995, 50, 69.
    • S. R. Heron, R. Wilson, S. A. Shaffer, D. R. Goodlett, J. M. Cooper. Surface acoustic wave nebulization of peptides as a microfluidic interface for mass spectrometry. Anal. Chem. 2010, 82, 3985.
    • Surface acoustic wave nebulization produces ions with lower internal energy than electrospray ionization. J. Am. Soc. Mass Spectrom. 2012, 23, 1062.
    • S. H. Yoon, Y. Huang, J. S. Edgar, Y. S. Ting, S. R. Heron, Y. Kao, Y. Li, C. D. Masselon, R. K. Ernst, D. R. Goodlett. Surface acoustic wave nebulization facilitating lipid mass spectrometric analysis. Anal. Chem. 2012, 84, 6530.
    • D. R. Goodlett, S. R. Heron, J. Cooper. Methods and Systems for Mass Spectrometry. US 2012/0145890 A1, 2012.
    • E. E. Dodd. The Statistics of Liquid Spray and Dust Electrification by the Hopper and Laby Method. J. Appl. Phys. 1953, 24, 73.
    • M. Von Smoluchowski. Experimentell nachweisbare, der ueblichen Thermodynamik widersprechende Molekularphaenomene. Phys. Zeitschrift 1912, 13, 1069.
    • C. R. Blakley, M. L. Vestal. Thermospray interface for liquid chromatography/mass spectrometry. Anal. Chem. 1983, 55, 750.
    • M. L. Vestal. Studies of ionization mechanisms involved in thermospray LC-MS. Int. J. Mass Spectrom. Ion Phys. 1983, 46, 193.
    • A. Hirabayashi, M. Sakairi, H. Koizumi. Sonic Spray Ionization Method for Atmospheric Pressure Ionization Mass Spectrometry. Anal. Chem. 1994, 66, 4557.
    • D. A. Thomas, L. Wang, B. Goh, E. S. Kim, J. L. Beauchamp. Mass Spectrometric Sampling of a Liquid Surface by Nanoliter Droplet Generation from Bursting Bubbles and Focused Acoustic Pulses: Application to Studies of Interfacial Chemistry. Anal. Chem. 2015, 87, 3336.
    • [18] J. Liu, H. Wang, N. E. Manicke, J. M. Lin, R. G. Cooks, Z. Ouyang. Development, characterization, and application of paper spray ionization. Anal. Chem. 2010, 82, 2463.
    • [19] [20] [21] [22] [23] [27] [28] [29] H. Wang, J. Liu, R. Graham Cooks, Z. Ouyang. Paper spray for direct analysis of complex mixtures using mass spectrometry. Angew. Chem. 2010, 49, 877.
    • Appl. Phys. Lett. 2009, 94, 084106.
    • Int. J. Mass Spectrom. 2012, 325-327, 167.
    • A. Badu-Tawiah, R. G. Cooks. Enhanced ion signals in desorption electrospray ionization using surfactant spray solutions. J. Am. Soc. Mass Spectrom. 2010, 21, 1423.
    • Q. Yang, H. Wang, J. D. Maas, W. J. Chappell, N. E. Manicke, R. G. Cooks, Z. Ouyang. Paper spray ionization devices for direct, biomedical analysis using mass spectrometry. Int. J. Mass Spectrom. 2012, 312, 201.
    • M. Dole, L. L. Mack, R. L. Hines, R. C. Mobley, L. D. Ferguson, M. B. Alice. Molecular Beams of Macroions. J. Chem. Phys. 1968, 49, 2240.
    • X. Llopart, M. Campbell, D. San Segundo, E. Pernigotti, R. Dinapoli, Medipix2, a 64k pixel read out chip with 55 μm square elements working in single photon counting mode, in Nuclear Science Symposium Conference Record, 2001. IEEE, 2001, pp. 1484-1488.
    • X. Ã. Llopart, R. Ballabriga, M. Campbell, L. Tlustos, W. Wong. Timepix, a 65k programmable pixel readout chip for arrival time, energy and/or photon counting measurements. Nucl.
    • [24] S. U. A. H. Syed, G. B. Eijkel, P. Kistemaker. Experimental Investigation of the 2D Ion Beam Profile Generated by an ESI Octopole-QMS System. J. Am. Soc. Mass Spectrom. 2014, 25, 1780.
    • [25] A. Kiss, J. H. Jungmann, D. F. Smith, R. M. A. Heeren. Microscope mode secondary ion mass spectrometry imaging with a Timepix detector. Rev. Sci. Instrum. 2013, 84, 013704.
    • [26] J. V Iribarne, B. A. Thomson. On the evaporation of small ions from charged droplets. J. Chem.
    • Phys. 1976, 64, 2287.
    • [30] [31] [32] [33] Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 2007, 581, 485.
    • Mass Spectrom. 2013, 27, 1.
    • Int. J. Mass Spectrom. 2013, 341-342, 34.
    • J. Vallerga, J. McPhate, A. Tremsin, O. Siegmund, B. Mikulec, A. Clark. Optically sensitive Medipix2 detector for adaptive optics wavefront sensing. Nucl. Instruments Methods Phys.
    • Res. A 2005, 546, 263.
    • D. Turecek, T. Holy, J. Jakubek, S. Pospisil, Z. Vykydal. Pixelman: a multi-platform data acquisition and processing software package for Medipix2, Timepix and Medipix3 detectors.
    • J. Instrum. 2011, 6, C01046.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article