OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, login, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Wagner, S.J.; Holmes, B.M.; Younis, U.; Sigal, I.; Helmy, A.S.; Aitchison, S.J.; Hutchings, D.C. (2011)
Publisher: I E E E
Languages: English
Types: Article
Subjects: QC, TK

Classified by OpenAIRE into

arxiv: Physics::Optics
Wavelength conversion by difference frequency generation is demonstrated in domain-disordered quasi-phase-matched waveguides. The waveguide structure consisted of a GaAs/AlGaAs superlattice core that was periodically intermixed by ion implantation. For quasi-phase-matching periods of 3.0–3.8 μm, degeneracy pump wavelengths were found by second-harmonic generation experiments for fundamental wavelengths between 1520 and 1620 nm in both type-I and type-II configurations. In the difference frequency generation experiments, output powers up to 8.7 nW were generated for the type-I phase matching interaction and 1.9 nW for the type-II interaction. The conversion bandwidth was measured to be over 100 nm covering the C, L, and U optical communications bands, which agrees with predictions.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] C. Q. Xu, H. Okayama, and M. Kawahara, “1.5 μm band efficient broadband wavelength conversion by difference frequency generation in a periodically domain-inverted LiNbO3 channel waveguide,” Appl. Phys. Lett., vol. 63, no. 26, pp. 3559-3561, 1993.
    • [2] M. H. Chou, J. Hauden, M. A. Arbore, and M. M. Fejer, “1.5-μmband wavelength conversion based on difference-frequency generation in LiNbO3 waveguides with integrated coupling structures,” Opt. Lett., vol. 23, no. 13, pp. 1004-1006, 1998.
    • [3] J. Wang, J. Sun, C. Lou, and Q. Sun, “Experimental demonstration of wavelength conversion between ps-pulses based on cascaded sum- and difference frequency generation (SFG+DFG) in LiNbO3 waveguides,” Opt. Express, vol. 13, no. 19, pp. 7405-7414, 2005.
    • [4] A. S. Helmy, P. Abolghasem, J. S. Aitchison, B. J. Bijlani, J. Han, B. M. Holmes, D. Hutchings, U. Younis, and S. J. Wagner, “Recent advances in phase matching of second-order nonlinearities in monolithic semiconductor waveguides,” Laser Photonics Rev., 2010, to be published.
    • [5] A. Fiore, V. Berger, E. Rosencher, P. Bravetti, and J. Nagle, “Phase matching using an isotropic nonlinear optical material,” Nature, vol. 391, pp. 463-466, 1998.
    • [6] E. Guillotel, M. Ravaro, F. Ghiglieno, C. Langlois, C. Ricolleau, S. Ducci, I. Favero, and G. Leo, “Parametric amplification in GaAs/AlOx waveguide,” Appl. Phys. Lett., vol. 94, no. 17, pp. 171 110-3, 2009.
    • [7] S. J. B. Yoo, C. Caneau, R. Bhat, M. A. Koza, A. Rajhel, and N. Antoniades, “Wavelength conversion by difference frequency generation in AlGaAs waveguides with periodic domain inversion achieved by wafer bonding,” Appl. Phys. Lett., vol. 68, no. 19, pp. 2609-2611, 1996.
    • [8] O. Levi, T. J. Pinguet, T. Skauli, L. A. Eyres, K. R. Parameswaran, J. S. Harris, Jr., M. M. Fejer, T. J. Kulp, S. E. Bisson, B. Gerard, E. Lallier, and L. Becouarn, “Difference frequency generation of 8-μm radiation in orientation-patterned GaAs,” Opt. Lett., vol. 27, no. 23, pp. 2091-2093, 2002.
    • [9] J.-B. Han, P. Abolghasem, D. Kang, B. J. Bijlani, and A. S. Helmy, “Difference-frequency generation in AlGaAs Bragg reflection waveguides,” Opt. Lett., vol. 35, no. 14, pp. 2334-2336, 2010.
    • [10] A. S. Helmy, D. C. Hutchings, T. C. Kleckner, J. H. Marsh, A. C. Bryce, J. M. Arnold, C. R. Stanley, J. S. Aitchison, C. T. A. Brown, K. Moutzouris, and M. Ebrahimzadeh, “Quasi phase matching in GaAs-AlAs superlattice waveguides through bandgap tuning by use of quantum-well intermixing,” Opt. Lett., vol. 25, no. 18, pp. 1370-1372, 2000.
    • [11] J. H. Marsh, “Quantum well intermixing,” Semi. Sci. Technol., vol. 6, pp. 1136-1155, 1993.
    • [12] U. Younis, B. M. Holmes, D. C. Hutchings, and J. S. Roberts, “Towards monolithic integration of nonlinear optical frequency conversion,” IEEE Photonics Technol. Lett., vol. 20, pp. 1258-1260, 2010.
    • [13] D. C. Hutchings, “Theory of ultrafast nonlinear refraction in semiconductor superlattices,” IEEE J. Sel. Top. Quantum Electron., vol. 10, no. 5, pp. 1124-1132, 2004.
    • [14] S. J. Wagner, B. M. Holmes, U. Younis, A. S. Helmy, J. S. Aitchison, and D. C. Hutchings, “Continuous wave second-harmonic generation using domain-disordered quasi-phase matching waveguides,” Appl. Phys. Lett., vol. 94, no. 15, pp. 151 107-3, 2009.
    • [15] D. C. Hutchings, S. J. Wagner, B. M. Holmes, U. Younis, A. S. Helmy, and J. S. Aitchison, “Type-II quasi-phase matching in periodically intermixed semiconductor superlattice waveguides,” Opt. Lett., vol. 35, no. 8, pp. 1299-1301, 2010.
    • [16] T. C. Kleckner, A. S. Helmy, K. Zeaiter, D. C. Hutchings, and J. S. Aitchison, “Dispersion and modulation of the linear optical properties of GaAs-AlAs superlattice waveguides using quantum-well intermixing,” IEEE J. Quantum Electron., vol. 42, pp. 280-286, 2006.
    • [17] O. P. Kowalski, C. J. Hamilton, S. D. McDougall, J. H. Marsh, A. C. Bryce, R. M. De La Rue, B. Vogele, C. R. Stanley, C. C. Button, and J. S. Roberts, “A universal damage induced technique for quantum well intermixing,” Appl. Phys. Lett., vol. 72, no. 5, pp. 581-583, 1998.
  • No related research data.
  • No similar publications.

Share - Bookmark

Download from

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok