Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Donagi, Ron; He, Yang-Hui; Ovrut, Burt; Reinbacher, Rene (2004)
Publisher: Elsevier BV
Journal: Physics Letters B
Languages: English
Types: Article
Subjects: QC, High Energy Physics - Theory, Mathematics - Algebraic Geometry, Nuclear and High Energy Physics

Classified by OpenAIRE into

arxiv: High Energy Physics::Phenomenology, High Energy Physics::Theory, High Energy Physics::Lattice, Mathematics::Symplectic Geometry, General Relativity and Quantum Cosmology
A methodology for computing the massless spectrum of heterotic vacua with Wilson lines is presented. This is applied to a specific class of vacua with holomorphic SU(5)-bundles over torus-fibered Calabi-Yau threefolds with fundamental group Z_2. These vacua lead to low energy theories with the standard model gauge group SU(3)_C x SU(2)_L x U(1)_Yand three families of quark/leptons. The massless spectrum is computed, including the multiplicity of Higgs doublets.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] R. Donagi, Principal bundles on elliptic fibrations Asian J. Math. Vol. 1 (1997), 214-223, alg-geom/9702002.
    • [2] R. Friedman, J. Morgan, E. Witten, “Vector Bundles And F Theory,” Commun.Math.Phys. 187 (1997) 679-743. “Vector Bundles over Elliptic Fibrations,” alg-geom/9709029.
    • [3] B. Ovrut, T. Pantev, R. Reinbacher, Torus-Fibered Calabi-Yau Threefolds with NonTrivial Fundamental Group, UPR 1015-T, hep-th/0212221. B. Ovrut, T. Pantev, R. Reinbacher, Invariant Homology on Standard Model Manifolds, UPR 1016-T, hep-th/0303020. R. Donagi, B. A. Ovrut, T. Pantev and R. Reinbacher, “SU(4) instantons on Calabi-Yau threefolds with Z(2) x Z(2) fundamental group,”JHEP 0401, 022 (2004) [arXiv:hep-th/0307273]. Burt A. Ovrut, Tony Pantev, Jaemo Park, “Small Instanton Transitions in Heterotic M-Theory,” JHEP 0005, 045 (2000), hep-th/0001133. A. Lukas, B.A. Ovrut, and D. Waldram, Non-standard embedding and five-branes in heterotic M-Theory, Nucl.Phys. B552 (1999) 246-290. A. Lukas, B.A. Ovrut, K.S. Stelle and D. Waldram, Heterotic M-theory in Five Dimensions, Nucl.Phys. B552 (1999) 246-290. 10 E. Buchbinder, R. Donagi and B. A. Ovrut, “Vector bundle moduli and small instanton transitions,” JHEP 0206, 054 (2002) [arXiv:hep-th/0202084].
    • Yang-Hui He, Burt A. Ovrut, and Ren´e Reinbacher, “The Moduli of Reducible Vector Bundles,” JHEP 0403, 043 (2004) [arXiv:hep-th/0306121].
    • [4] R. Thomas, Examples of bundles on Calabi-Yau 3-folds for string theory compactifications, Adv.Theor.Math.Phys. 4 (2000) 231-247. B. Andreas, “N = 1 heterotic/F-theory duality,” Fortsch. Phys. 47, 587 (1999) [arXiv:hep-th/9808159]. Paul S. Aspinwall, Ron Y. Donagi, “The Heterotic String, the Tangent Bundle, and Derived Categories,” Adv.Theor.Math.Phys. 2 (1998) 1041-1074, hep-th/9806094]. E. J. Copeland, J. Gray and A. Lukas, “Moving five-branes in low-energy heterotic Mtheory,” Phys. Rev. D 64, 126003 (2001), [arXiv:hep-th/0106285]. J. Gray, A. Lukas and G. I. Probert, “Gauge five brane dynamics and small instanton transitions in heterotic models,” Phys. Rev. D 69, 126003 (2004), [arXiv:hep-th/0312111]. B. Andreas, G. Curio and A. Klemm, “Towards the standard model spectrum from elliptic Calabi-Yau,” Int. J. Mod. Phys. A 19, 1987 (2004) [arXiv:hep-th/9903052]. D. E. Diaconescu and G. Ionesei, “Spectral covers, charged matter and bundle cohomology,” JHEP 9812, 001 (1998) [arXiv:hep-th/9811129].
    • [5] R. Donagi, B. Ovrut, T. Pantev, and D. Waldram, Spectral involutions on rational elliptic surfaces, Adv.Theor.Math.Phys. 5 (2002) 499-561, math.AG/0008011. R. Donagi, B. Ovrut, T. Pantev, and D. Waldram, Standard-Model bundles, Adv.Theor.Math.Phys. 5 (2002) 563-615, math.AG/0008010. R. Donagi, B. Ovrut, T. Pantev, and D. Waldram, Standard-Model bundles on nonsimply connected Calabi-Yau threefolds, JHEP, 0108 (2001) 053, hep-th/0008008. R. Donagi, B. Ovrut, T. Pantev, and D. Waldram, Standard Models from Heterotic M-theory, Adv.Theor.Math.Phys., 5 (2002) 93-137.
    • [6] R. Donagi, Y. H. He, B. A. Ovrut and R. Reinbacher, “Moduli dependent spectra of heterotic compactifications,” arXiv:hep-th/0403291. R. Donagi, Y. H. He, B. A. Ovrut and R. Reinbacher, “The particle spectrum of heterotic compactifications,” arXiv:hep-th/0405014.
    • [7] R. Donagi, Y. H. He, B. A. Ovrut and R. Reinbacher, To appear.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article