You have just completed your registration at OpenAire.
Before you can login to the site, you will need to activate your account.
An e-mail will be sent to you with the proper instructions.
Important!
Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version
of the site upon release.
The evolution of a competitive-consecutive chemical reaction is\ud computed numerically in a two-dimensional chaotic fluid flow with\ud initially segregated reactants. Results from numerical simulations are\ud used to evaluate a variety of reduced models commonly adopted to model\ud the full advection-reaction-diffusion problem. Particular emphasis is\ud placed upon fast reactions, where the yield varies most significantly\ud with Peclet number (the ratio of diffusive to advective time scales).\ud When effects of the fluid mechanical mixing are strongest, we find that\ud the yield of the reaction is underestimated by a one-dimensional\ud lamellar model that ignores the effects of fluid mixing, but\ud overestimated by two other lamellar models that include fluid mixing.
[9] J. M. Zalc and F. J. Muzzio, Parallel-competitive reactions in a two-dimensional chaotic flow, Chem. Eng. Sci. 54 (1999) 1053.
[10] M. Giona, S. Cerbelli and A. Adrover, Quantitative analysis of mixing structures in chaotic flows generated by infinitely fast reactions in the presence of diffusion, J. Phys. Chem. 106 (2002) 5722.
[11] J. R. A. Pearson, Diffusion of one substance into a semi-infinite medium containing another with second-order reaction, Appl. Sci. Res. 11 (1961) 321.
[12] W. E. Ranz, Applications of a stretch model to mixing, diffusion, and reaction in laminar and turbulent flows, AIChE J. 25 (1979) 41.
[13] M. J. Clifford, S. M. Cox and E. P. L. Roberts, Lamellar modelling of reaction, diffusion and mixing in a two-dimensional flow, Chem. Eng. J. 71 (1998) 49.
[14] M. J. Clifford, S. M. Cox and E. P. L. Roberts, Reaction and diffusion in a lamellar structure: the effect of the lamellar arrangement upon yield, Physica A 262 (1999) 294.
[15] S. M. Cox, M. J. Clifford and E. P. L. Roberts, A two-stage reaction with initially separated reactants, Physica A 256 (1998) 65.
[16] S. D. Fields and J. M. Ottino, Effect of striation thickness distribution on the course of an unpremixed polymerization, Chem. Eng. Sci. 42 (1987) 459.
[17] S. D. Fields and J. M. Ottino, Effect of stretching path on the course of polymerizations: applications to idealized unpremixed reactors, Chem. Eng. Sci. 42 (1987) 467.
[18] S. D. Fields and J. M. Ottino, Effect of segregation on the course of unpremixed polymerizations, AIChE J. 33 (1987) 959.
[19] F. J. Muzzio and J. M. Ottino, Evolution of a lamellar system with diffusion and reaction: a scaling approach, Phys. Rev. Lett. 63 (1989) 47.
[20] F. J. Muzzio and J. M. Ottino, Dynamics of a lamellar system with diffusion and reaction: scaling analysis and global kinetics, Phys. Rev. A 40 (1989) 7182.
[21] F. J. Muzzio and J. M. Ottino, Diffusion and reaction in a lamellar system: self-similarity with finite rates of reaction, Phys. Rev. A 42 (1990) 5873.
[22] D. M. Hobbs, M. M. Alvarez and F. J. Muzzio, Mixing in globally chaotic flows: a self-similar process, Fractals 5 (1997) 395.
[23] S. Cerbelli, J. M. Zalc and F. J. Muzzio, The evolution of material lines curvature in deterministic chaotic flows, Chem. Eng. Sci. 55 (2000) 363.
[24] M. Liu, R. L. Peskin, F. J. Muzzio and C. W. Leong, Structure of the stretching field in chaotic cavity flows, AIChE J. 40 (1994) 1273.
[25] J. G. Franjione and J. M. Ottino, Symmetry concepts for the geometric analysis of mixing flows, Phil. Trans. R. Soc. Lond. A 338 (1992) 301.
[26] M. Liu, F. J. Muzzio and R. L. Peskin, Quantification of mixing in aperiodic chaotic flows, Chaos, Solitons and Fractals 4 (1994) 869.
[27] A. Adrover, S. Cerbelli and M. Giona, A spectral approach to reaction/diffusion kinetics in chaotic flows, Comp. Chem. Eng. 26 (2002) 125.
[28] M. Giona, S. Cerbelli and A. Adrover, Geometry of reaction interfaces in chaotic flows, Phys. Rev. Lett. 88 (2002) 024501.
[29] E. L. Paul and R. E. Treybal, Mixing and product distribution for a liquidphase, second-order, competitive-consecutive reaction, AIChE J. 17 (1971) 718.
[30] J. P. Boyd, Chebyshev and Fourier spectral methods, second edition (Dover, New York, 2001).
[31] J. Certaine, The solution of ordinary differential equations with large time constants, in Mathematical Methods for Digitial Computers, Eds A. Ralston and H. S. Wilf (1960) pp.128-132, Wiley, New York.
[32] S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comp. Phys. 176 (2002) 430.
[33] D. Rothstein, E. Henry and J. P. Gollub, Persistent patterns in transient chaotic fluid mixing, Nature 401 (1999) 770.
[34] D. Beigie, A. Leonard and S. Wiggins, A global study of enhanced stretching and diffusion in chaotic tangles, Phys. Fluids A 3 (1991) 1039.
[35] Z. Koza and H. Taitelbaum, Motion of the reaction front in the A + B → C reaction-diffusion system, Phys. Rev. E 54 (1996) R1040.
[36] H. Taitelbaum, S. Havlin, J. E. Kiefer, B. Trus and G. H. Weiss, Some properties of the A+B → C reaction-diffusion system with initially separated components, J. Stat. Phys. 65 (1991) 873.
[37] H. Taitelbaum, Y.-E. L. Koo, S. Havlin, R. Kopelman and G. H. Weiss, Exotic behavior of the reaction front in the A + B → C reaction-diffusion system, Phys. Rev. A 46 (1992) 2151.
[38] H. Taitelbaum and Z. Koza, Anomalous kinetics of reaction-diffusion fronts, Philos. Mag. B 77 (1998) 1389.
[39] A. Yen, Z.-Y. Shi and R Kopelman, Early-time scaling for the reaction front of a ternary, A + 2B → C, reaction-diffusion system, Phys. Rev. E 57 (1998) 2438.
[40] M. Lindberg and A˚. C. Rasmuson, Product concentration profile in strained reacting fluid films, Chem. Eng. Sci. 54 (1999) 483.
[41] I. M. Sokolov and A. Blumen, Mixing effects in the A+B → 0 reaction-diffusion scheme, Phys Rev. Lett. 66 (1991) 1942.
[42] I. M. Sokolov and A. Blumen, Reactions in systems with mixing, J. Phys. A: Math. Gen. 24 (1991) 3687.
[43] M. M. Alvarez, F. J. Muzzio, S. Cerbelli, A. Adrover and M. Giona, Self-similar spatiotemporal structure of intermaterial boundaries in chaotic flows, Phys. Rev. Lett. 81 (1998) 3395.
[44] A. Adrover, M. Giona, F. J. Muzzio, S. Cerbelli and M. M. Alvarez, Analytic expression for the short-time rate of growth of the intermaterial contact perimeter in two-dimensional chaotic flows and Hamiltonian systems, Phys. Rev. E 58 (1998) 447.
[45] S. Cerbelli, M. M. Alvarez and F. J. Muzzio, Prediction and quantification of micromixing intensities in laminar flows, AIChE J. 48 (2002) 686.
[47] S. M. Cox and M. D. Finn, Behavior of the reaction front between initially segregated species in a two-stage reaction, Phys. Rev. E 63 (2001) 051102.
[48] Z. Koza, Asymptotic behaviour of initially separated A + B(static) → 0 reaction-diffusion systems, Physica A 240 (1997) 622.
[49] Z. Koza, Asymptotic properties of the A + B → 0 reaction-diffusion front, Philos. Mag. B 77 (1998) 1437.
[50] H. A. Kusch, J. M. Ottino and D. M. Shannon, Analysis of impingement mixingreaction data: use of a lamellar model to generate fluid mixing information, Ind. Eng. Chem. Res. 28 (1989) 302.