Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Malfait, Aurélie; Coumes, Fanny; Fournier, David; Cooke, Graeme; Woisel, Patrice (2015)
Publisher: Elsevier BV
Journal: European Polymer Journal
Languages: English
Types: Article
Subjects: Physics and Astronomy(all), Organic Chemistry, Polymers and Plastics
We report a multi-stimuli responsive polymeric sensor consisting of a pseudorotaxane-like architecture fabricated from a 1,5-diaminonaphthalene end-functionalized poly(N-isopropyl)acrylamide (Napht-N-PNIPAM) and cyclobis(paraquat-p-phenylene) (CBPQT4+,4Cl-). The coloured nature of the poly-pseudorotaxane provides a sensor for temperature and pH in water with an associated visible readout. To create this dual responsive polymeric sensor, a new chain transfer agent (Napht-N-CTA) incorporating a pH-responsive 1,5-diaminonaphthalene unit was synthesized and used for the polymerization of N-isopropylacrylamide via Reversible Addition-Fragmentation Chain Transfer (RAFT). The ability of Napht-N-PNIPAM to form a pseudorotaxane architecture with CBPQT4+,4Cl- in aqueous media was studied by means of UV-Vis, NMR (1H, 2D-ROESY, DOSY) and ITC experiments. Interestingly, the pseudorotaxane architecture can be reversibly dissociated upon either heating the sample above its cloud point or protonating the nitrogen atoms of the 1,5-diaminonaphthalene-based guest unit by adjusting the pH to around 1. ln both cases a dramatic colour change occurs from intense blue-green to colourless.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Mendes PM. Stimuli-responsive surfaces for bio-applications. Chem Soc Rev. 2008;37(11):2512- 2529.
    • [2] Roy D, Cambre JN, Sumerlin BS. Future perspectives and recent advances in stimuli-responsive materials. Prog Polym Sci. 2010;35(1-2):278-301.
    • [3] Liu F, Urban MW. Recent advances and challenges in designing stimuli-responsive polymers. Prog Polym Sci. 2010;35(1-2):3-23.
    • [4] Hoffman AS. Stimuli-responsive polymers: Biomedical applications and challenges for clinical translation. Adv Drug Delivery Rev. 2013;65(1):10-16.
    • [5] Zhuang J, Gordon MR, Ventura J, Li L, Thayumanavan S. Multi-stimuli responsive macromolecules and their assemblies. Chem Soc Rev. 2013;42(17):7421-7435.
    • [6] Schattling P, Jochum FD, Theato P. Multi-stimuli responsive polymers - the all-in-one talents. Polym Chem. 2014;5(1):25-36.
    • [7] Cooke G, Garety JF, Hewage SG, Jordan BJ, Rabani G, Rotello VM, et al. Tuneable Side-Chain Supramolecular Polymer. Org Lett. 2007;9(3):481-484.
    • [8] Bigot J, Bria M, Caldwell ST, Cazaux F, Cooper A, Charleux B, et al. LCST: a powerful tool to control complexation between a dialkoxynaphthalene-functionalised poly(N-isopropylacrylamide) and CBPQT4+ in water. Chem Commun. 2009(35):5266-5268.
    • [9] Stuart MAC, Huck WTS, Genzer J, Muller M, Ober C, Stamm M, et al. Emerging applications of stimuli-responsive polymer materials. Nat Mater. 2010;9(2):101-113.
    • [10] Sambe L, Stoffelbach F, Lyskawa J, Delattre F, Fournier D, Bouteiller L, et al. Host-Guest Modulation of the Micellization of a Tetrathiafulvalene-Functionalized Poly(N-isopropylacrylamide). Macromolecules. 2011;44(16):6532-6538.
    • [11] Cabane E, Zhang X, Langowska K, Palivan CG, Meier W. Stimuli-Responsive Polymers and Their Applications in Nanomedicine. Biointerphases. 2012;7(1).
    • [12] Kelley EG, Albert JNL, Sullivan MO, Epps III TH. Stimuli-responsive copolymer solution and surface assemblies for biomedical applications. Chem Soc Rev. 2013;42(17):7057-7071.
    • [13] Ge Z, Liu S. Functional block copolymer assemblies responsive to tumor and intracellular microenvironments for site-specific drug delivery and enhanced imaging performance. Chem Soc Rev. 2013;42(17):7289-7325.
    • [14] Doring A, Birnbaum W, Kuckling D. Responsive hydrogels - structurally and dimensionally optimized smart frameworks for applications in catalysis, micro-system technology and material science. Chem Soc Rev. 2013;42(17):7391-7420.
    • [15] Klaikherd A, Nagamani C, Thayumanavan S. Multi-Stimuli Sensitive Amphiphilic Block Copolymer Assemblies. J Am Chem Soc. 2009;131(13):4830-4838.
    • [16] Motornov M, Roiter Y, Tokarev I, Minko S. Stimuli-responsive nanoparticles, nanogels and capsules for integrated multifunctional intelligent systems. Prog Polym Sci. 2010;35(1-2):174-211.
    • [17] Mura S, Nicolas J, Couvreur P. Stimuli-responsive nanocarriers for drug delivery. Nat Mater. 2013;12(11):991-1003.
    • [18] Gota C, Uchiyama S, Ohwada T. Accurate fluorescent polymeric thermometers containing an ionic component. Analyst. 2007;132(2):121-126.
    • [19] Shiraishi Y, Miyamoto R, Hirai T. A Hemicyanine-Conjugated Copolymer as a Highly Sensitive Fluorescent Thermometer. Langmuir. 2008;24(8):4273-4279.
    • [20] Pietsch C, Vollrath A, Hoogenboom R, Schubert US. A Fluorescent Thermometer Based on a Pyrene-Labeled Thermoresponsive Polymer. Sensors. 2010;10(9):7979-7990.
    • [21] Pietsch C, Schubert US, Hoogenboom R. Aqueous polymeric sensors based on temperatureinduced polymer phase transitions and solvatochromic dyes. Chem Commun. 2011;47(31):8750- 8765.
    • [22] Okabe K, Inada N, Gota C, Harada Y, Funatsu T, Uchiyama S. Intracellular temperature mapping with a fluorescent polymeric thermometer and fluorescence lifetime imaging microscopy. Nat Commun. 2012;3:705.
    • [23] Wang X-d, Wolfbeis OS, Meier RJ. Luminescent probes and sensors for temperature. Chem Soc Rev. 2013;42(19):7834-7869.
    • [24] Tsuji T, Yoshida S, Yoshida A, Uchiyama S. Cationic Fluorescent Polymeric Thermometers with the Ability to Enter Yeast and Mammalian Cells for Practical Intracellular Temperature Measurements. Anal Chem. 2013;85(20):9815-9823.
    • [25] Pietsch C, Hoogenboom R, Schubert US. Soluble Polymeric Dual Sensor for Temperature and pH Value. Angew Chem. 2009;48(31):5653-5656.
    • [26] Hong SW, Ahn C-H, Huh J, Jo WH. Synthesis of a PEGylated Polymeric pH Sensor and Its pH Sensitivity by Fluorescence Resonance Energy Transfer. Macromolecules. 2006;39(22):7694-7700.
    • [27] Bryleva EY, Vodolazkaya NA, McHedlov-Petrossyan NO, Samokhina LV, Matveevskaya NA, Tolmachev AV. Interfacial properties of cetyltrimethylammonium-coated SiO2 nanoparticles in aqueous media as studied by using different indicator dyes. J Colloid Interface Sci. 2007;316(2):712- 722.
    • [28] Koopmans C, Ritter H. Color Change of N-Isopropylacrylamide Copolymer Bearing Reichardts Dye Op S f w C S u T mp u f H −Gu I - Cyclodextrin. J Am Chem Soc. 2007;129(12):3502-3503.
    • [29] Wu W, Zhou T, Aiello M, Zhou S. Optically pH and H2O2 Dual Responsive Composite Colloids through the Directed Assembly of Organic Dyes on Responsive Microgels. Chem Mater. 2009;21(20):4905-4913.
    • [30] Peng H-s, Stolwijk JA, Sun L-N, Wegener J, Wolfbeis OS. A Nanogel for Ratiometric Fluorescent Sensing of Intracellular pH Values. Angew Chem. 2010;49(25):4246-4249.
    • [31] Li C, Zhang Y, Hu J, Cheng J, Liu S. Reversible Three-State Switching of Multicolor Fluorescence Emission by Multiple Stimuli Modulated FRET Processes within Thermoresponsive Polymeric Micelles. Angew Chem. 2010;49(30):5120-5124.
    • [32] Pietsch C, Hoogenboom R, Schubert US. PMMA based soluble polymeric temperature sensors based on UCST transition and solvatochromic dyes. Polym Chem. 2010;1(7):1005-1008.
    • [33] Sambe L, de La Rosa VR, Belal K, Stoffelbach F, Lyskawa J, Delattre F, et al. Programmable Polymer-Based Supramolecular Temperature Sensor with a Memory Function. Angew Chem. 2014;53(20):5044-5048.
    • [34] Sue C-H, Basu S, Fahrenbach AC, Shveyd AK, Dey SK, Botros YY, et al. Enabling tetracationic cyclophane production by trading templates. Chem Sci. 2010;1(1):119-125.
    • [1] Sue C-H, Basu S, Fahrenbach AC, Shveyd AK, Dey SK, Botros YY, et al. Enabling tetracationic cyclophane production by trading templates. Chem Sci. 2010;1(1):119-125.
    • [2] Qiu X-P, Tanaka F, Winnik FM. Temperature-Induced Phase Transition of Well-Defined Cyclic Poly(N-isopropylacrylamide)s in Aqueous Solution. Macromolecules. 2007;40(20):7069-7071.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article