LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Armstrong, Richard A. (2012)
Languages: English
Types: Article
Subjects:
The densities of diffuse, primitive, and classic ß-amyloid (Aß) deposits were studied in the temporal lobe in cognitively normal brain, dementia with Lewy bodies (DLB), familial Alzheimer’s disease (FAD), and sporadic AD (SAD). Principal components analysis (PCA) was used to determine whether there were distinct differences between groups or whether Aß pathology was more continuously distributed from group to group. Three principal components (PC) were extracted from the data accounting for 56% of the total variance. Plots of cases in relation to the PC did not result in distinct groups but suggested overlap in Aß deposition between the groups. In addition, there were linear correlations between the densities of Aß deposits and the distribution of the cases along the PC in specific brain regions suggesting continuous variation from group to group. PC1 was associated with the degree of maturation of Aß deposits, PC2 with differences between FAD and SAD, and PC3 with the degree of spread of Aß pathology into the hippocampus. Apolipoprotein E (APOE) genotype was not associated with variation in Aß deposition between cases. PCA may be a useful method of studying the pathological interface between closely related neurodegenerative disorders.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. Anderton BH. Ageing of the brain. Mech Ageing Dev 2002; 123: 811-817.
    • 2. Armstrong RA. Beta-amyloid deposition in the medial temporal lobe in elderly non-demented brains and in Alzheimer's disease. Dementia 1995; 6: 121-125.
    • 3. Armstrong RA. β-amyloid (Aβ) deposits and blood vessels: laminar distribution in the frontal cortex of patients with Alzheimer's disease. Neurosci Res Communs 1996; 18: 19-28.
    • 4. Armstrong RA. β-amyloid plaques: stages in life history or independent origin? Dement Geriatr Cogn Disord 1998; 9: 227-238.
    • 5. Armstrong RA. Plaques and tangles and the pathogenesis of Alzheimer's disease. Folia Neuropathol 2006; 44: 1-11.
    • 6. Armstrong RA. The interface between Alzheimer's disease, normal aging and related disorders. Current Aging Science 2008; 1: 122-132.
    • 7. Armstrong RA. Spatial patterns of β-amyloid (Aβ) deposits in familial and sporadic Alzheimer's disease. Folia Neuropathol 2011; 49: 153-161.
    • 8. Armstrong RA, Myers D, Smith CUM. Alzheimer's disease: size class frequency distribution of senile plaques: do they indicate when a brain tissue was affected? Neurosci Lett 1991; 127: 223-226.
    • 9. Armstrong RA, Cairns NJ, Lantos PL. β-amyloid (Aβ) deposition in the medial temporal lobe of patients with dementia with Lewy bodies. Neurosci Lett 1997; 227: 193-196.
    • 10. Armstrong RA, Nochlin D, Bird TD. Neuropathological heterogeneity in Alzheimer's disease: A study of 80 cases using principal components analysis. Neuropathology 2000; 20: 31-37.
    • 11. Armstrong RA, Lantos PL, Cairns NJ. Overlap between neurodegenerative disorders. Neuropathology 2005; 25: 111-124.
    • 12. Armstrong RA, Ellis W, Hamilton RL, Mackenzie IRA, Hedreen J, Gearing M, Montine T, Vonsattel J-P, Head E, Lieberman AP, Cairns NJ. Neuropathological heterogeneity in frontotemporal lobar degeneration with TDP-43 proteinopathy: a quantitative study of 94 cases using principal components analysis. J Neural Transm 2010; 117: 227-239.
    • 13. Armstrong RA, Hilton A. Statistical Analysis in Microbiology: Statnotes. Wiley-Blackwell, Hoboken, New York 2011.
    • 14. Arriagada PV, Marzloff K, Hyman BT. Distribution of Alzheimer-type pathologic changes in non-demented elderly individuals matches the pattern in Alzheimer's disease. Neurology 1992; 42: 1681- 1688.
    • 15. Barrachina M, Dalfo E, Ping B, Vidal N, Freixes M, Castano E, Ferrer I. Amyloid-beta deposition in the cerebral cortex in DLB is accompanied by a relative increase in AbetaPP mRNA isoforms containing the Kunitz protease inhibitor. Neurochem Int 2005; 46: 253-260.
    • 16. Beffert U, Poirier J. Apolipoprotein E, plaques, tangles and cholinergic dysfunction in Alzheimer's disease. Anns NY Acad Sci 1996; 777: 166-174.
    • 17. Bergeron C, Ranalli PJ and Miceli PN. Amyloid angiopathy in Alzheimer's disease. Can J Neurol Sci 1987; 14: 564-569.
    • 18. Berr C, Hauw JJ, Delaere P, Duyckaerts C, Amouyel P. Apolipoprotein E allele e4 is linked to increased deposition of the amyloid β-peptide (Aβ) in cases with or without Alzheimer's disease. Neurosci Lett 1994; 178: 221-224.
    • 19. Chartier-Harlin MC, Crawford F, Houlden H, Warren A, Hughes D, Fidani L, Goate A, Rossor M, Rocques P, Hardy J, Mullan M. Early onset Alzheimer's disease caused by mutations at codon 717 of the β-amyloid precursor protein gene. Nature 1991; 353: 844-846.
    • 20. Delaere P, Duyckaerts C, He Y, Piette F, Hauw JJ. Subtypes and differential laminar distribution of β/A4 deposits in Alzheimer's disease: Relationship with the intellectual status of 26 cases. Acta Neuropathol 1991; 81: 328-335.
    • 21. Delaere P, He Y, Fayet G, Duyckaerts C, Hauw J. βA4 deposits are constant in the brains of the oldest old: An immunocytochemical study of 20 French Centenarians. Neurobiol Aging 1993; 14: 191-194.
    • 22. Dickson DW, Ruan D, Crystal H, Mark MH, Davies P, Kress Y, Yen SH. Hippocampal degeneration differentiates diffuse Lewy body disease (DLBD) from Alzheimer's disease: Light and electron microscope immunocytochemistry of CA2-3 neurites specific to DLBD. Neurology 1991; 41: 1402-1409.
    • 23. Feany MB, Dickson DW. Neurodegenerative disorders with extensive tau pathology: a comparative study and review. Ann Neurol 1986; 40: 139-148.
    • 24. Forstl H. The Lewy body variant of Alzheimer's disease: clinical, pathophysiological and conceptual issues. Eur Arch Psych Clin Neurol 1999; 249: 64-67.
    • 25. Gearing M, Schneider JA, Robins RS, Hollister RD, Mori H, Games D, Hyman BT, Mirra SS. Regional variations in the distribution of Apolipoprotein E and Aβ in Alzheimer's disease. J Neuropath Exp Neurol 1995; 54: 833-841.
    • 26. Gibb WR, Luthert PJ, Janota I, Lantos PL. Cortical Lewy body dementia: Clinical features and classification. J Neurol Neurosurg Psychiatr 1989; 52: 185-192.
    • 27. Gibson PH. Form and distribution of senile plaques seen in silver impregnated sections in the brains of intellectually normal elderly people and people with Alzheimer-type dementia. Neuropathol Appl Neurobiol 1983; 9: 379-389.
    • 28. Gibson PH. Relationship between numbers of cortical argentophilic and congophilic senile plaques in the brains of elderly people with and without senile dementia of the Alzheimer type. Gerontology 1985; 31: 321-324.
    • 29. Gibson PH. Ultrastructural abnormalities in the cerebral neocortex and hippocampus associated with Alzheimer's disease and aging. Acta Neuropathol 1987; 73: 86-91.
    • 30. Glenner GG, Wong CW. Alzheimer's disease and Down's syndrome: sharing of a unique cerebrovascular amyloid fibril protein. Biochem Biophys Res Commun 1984; 122: 1131-1135.
    • 31. Goate R, Chartier-Harlin M-C, Mullan M, Brown J, Crawford F, Fidani L, Giuffra L, Haynes A, Irving N, James L, Mant R, Newton P, Rooke K, Roques P, Talbot C, Pericak-Vance, Roses A, Williamson R, Rossor M, Owen M, Hardy J. Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature (London) 1991; 349: 704-706.
    • 32. Gomez-Isla T, West HL, Rebeck GW, Harr SD, Growdon JH, Lacascio JJ, Perls TT, Lipsitz LA, Hyman BT. Clinical and pathological correlates of apolipoprotein E e4 in Alzheimer's disease. Ann Neurol 1996; 39: 62-70.
    • 33. Hansen LA, Salmon D, Galasko D, Masliah E, Katzman R, de Teresa R, Thal L, Pay MM, Hofstetler R, Klauber M, Rice V, Butters VN, Alford M. The Lewy body variant of Alzheimer's disease: a clinical and pathological entity. Neurology 1990; 40: 1-8.
    • 34. Harrington CR, Perry RH, Perry EK, Hurt J, McKeith JG, Roth M, Wischik CM. Senile dementia of the Lewy body type and Alzheimer type are biochemically distinct in terms of paired helical filaments and hyperphosphorylated tau proteins. Dementia 1994; 5: 215-228.
    • 35. Imhof A, Kovari E, von Gunten A, Gold G, Rivara CB, Herrmann FR, Hof PR, Bouras C, Glannakopoulos P. Morphological substrates of cognitive decline in nonagenarians and centenarians: A new paradigm? J Neurol Sci 2007; 257: 72-79.
    • 36. Iseki E, Marin W, Kosaka K, Kato M, Yamamoto T, Ueda K. Clinicopathological multiplicity of dementia with Lewy bodies. Neuropathol 1999; 19: 386-394.
    • 37. Lauterbach EC. The neuropsychiatry of Parkinson's disease and related disorders. Psych Clin N Am 2004; 27: 801.
    • 38. Lobotesis K, Fenwick JD, Phipps A, Ryman A, Swann A, Ballard C, McKeith IG, O'Brien JT. Occipital hypoperfusion on SPECT in dementia with Lewy bodies but not Alzheimer's disease. Neurol 2001; 56: 643-649.
    • 39. Mann DMA, Tucker CM, Yates PO. Topographic distribution of senile plaques, neurofibrillary tangles in the brains of non demented persons of different age. Neuropath App Neurobiol 1987; 13: 123-139.
    • 40. Mann DMA, Jones D. Deposition of amyloid A4 protein within the brains of persons with dementing disorders other than Alzheimer's disease and Down's syndrome. Neurosci Lett 1990; 109: 68-75.
    • 41. McKeith IG, Galasko D, Kosaka K, Perry EK, Dickson DW, Hansen LA, Salmon DP, Lowe J, Mirra SS, Byrne EJ, Lennox G, Quinn NP, Edwardosn JA, Ince PG, Bergeron C, Burns A, Miller BL, Lovestone S, Collerton D, Jansen ENH, Ballard C, de Vos RAI, Wilcock GK, Jellinger KA, Perry RH. Consensus guidelines for the clinical and pathological diagnosis of dementia with Lewy bodies (DLB): Report of the consortium on DLB international workshop. Neurology 1996; 47: 1113-1124.
    • 42. Mirra SS, Heyman A, McKeel, D, Sumi SM, Crain BJ, Brownlee LM, Vogel FS, Hughes JP, van Belle G and Berg L. The consortium to establish a registry for Alzheimer's disease (CERAD). Part II Standardization of the neuropathologic assessment of Alzheimer's disease. Neurology 1991; 41: 479-486.
    • 43. Perneczky R, Mosch D, Neumann M, Kretschmar H, Muller U, Busch R, Forstl H and Kurz A. The Alzheimer variant of Lewy body disease: A pathologically confirmed case-control study. Demen Ger Cog Dis 2005; 20: 89-94.
    • 44. Rosenberg CK, Pericak-Vance MA, Saunders AM, Gilbert JR, Gaskell PC and Hulette CM. Lewy body and Alzheimer pathology in a family with the amyloid-beta precursor protein APP717 gene mutation. Acta Neuropathol 2000; 100: 145-152.
    • 45. Sherrington R, Rogaev E, Liang Y, Rogaeva E, Levesque G, Ikeda M, Chi H, Lin C, Li G, Holman K, Tsuda T, Mar L, Foncin J, Bruni A, Moulese M, Sorbi S, Rainero I, Pinessi L, Nee L, Chumakov I, Pollen D, Brookes A, Sauseau P, Polinski R, Wasco R, Dasilva H, Haines J, Pericak-Vance M, Tanzi R, Roses A, Fraser P, Rommens J, St George-Hyslop P. Cloning of a gene bearing missense mutations in early onset familial Alzheimer's disease. Nature 1993; 375: 754-760.
    • 46. Spargo E, Luthert PJ, Anderton BH, Bruce M, Smith D, Lantos PL. Antibodies raised against different proteins of A4 protein identify a subset of plaques in Down's syndrome. Neurosci Lett 1990; 115: 345-350.
    • 47. Szpak GM, Lewandowska E, Lechowicz W, Bertrand E, WierzbaBobrowicz T, Gwiazda E, Pasennik E, Kosno-Kruszewska E, Lipczynska-Lozkowska W, Bochynska A, Fiszer U. Lewy body variant of Alzheimer's disease and Alzheimer's disease: a comparative immunocytochemical study. Folia Neuropathol 2001; 39: 63-71.
    • 48. Strittmatter WJ, Weisgraber KH, Huang DY, Dong LM, Salvasan GS, Pericak-Vance M, Schmechel D, Saunders AM, Goldgaber D, Roses AD. Binding of human apoliprotein E to synthetic amyloid-β- peptide: isoform-specific effects and implications for late-onset Alzheimer's disease. Proc Natl Acad Sci USA 1993; 90: 8098-8102.
    • 49. Tierney MC, Fisher RH, Lewis AJ, Zorzitto ML, Snow WG, Reid DW, Nieuwstraten P. The NINCDS-ADRDA work group criteria for the clinical diagnosis of probable Alzheimer's disease. Neurology 1988; 38: 359-364.
    • 50. Woodward M, Mackenzie IRA, Hsiung GYR, Jacova C, Feldman H. Multiple brain pathologies in dementia are common. Eur Ger Med 2010; 1: 259-265.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article