Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
LHCb collaboration; Aaij, R.; Beteta, C. Abellan; Adametz, A.; Adeva, B.; Adinolfi, M.; Adrover, C.; Affolder, A.; Ajaltouni, Z.; Albrecht, J.; Alessio, F.; Alexander, M.; Ali, S.; Alkhazov, G.; Cartelle, P. Alvarez; Alves Jr, A. A.; Amato, S.; Amhis, Y.; Anderson, J.; Appleby, R. B.; Gutierrez, O. Aquines; Archilli, F.; Artamonov, A.; Artuso, M.; Aslanides, E.; Auriemma, G.; Bachmann, S.; Back, J. J.; Balagura, V.; Baldini, W. ... view all 619 authors View less authors (2012)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QC, High Energy Physics - Experiment
A search for the decay $B^0_s\rightarrow J/\psi K^{*0}$ with $K^{*0} \rightarrow K^-\pi^+$ is performed with 0.37 fb$^{-1}$ of $pp$ collisions at $\sqrt{s}$ = 7 TeV collected by the LHCb experiment, finding a $\Bs \to J\psi K^-\pi^+$ peak of $114 \pm 11$ signal events. The $K^-\pi^+$ mass spectrum of the candidates in the $B^0_s$ peak is dominated by the $K^{*0}$ contribution. Subtracting the non-resonant $K^-\pi^+$ component, the branching fraction of \BsJpsiKst is $(4.4_{-0.4}^{+0.5} \pm 0.8) \times 10^{-5}$, where the first uncertainty is statistical and the second systematic. A fit to the angular distribution of the decay products yields the \Kst polarization fractions $f_L = 0.50 \pm 0.08 \pm 0.02$ and $f_{||} = 0.19^{+0.10}_{-0.08} \pm 0.02$.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] S. Faller, R. Fleischer, and T. Mannel, Precision physics with Bs0 ! J= at the LHC: the quest for new physics, Phys. Rev. D79 (2009) 014005, arXiv:0810.4248.
    • [2] CDF collaboration, T. Aaltonen et al., Observation of B0 s ! J= K (892)0 and Bs0 ! J= KS0 decays, Phys. Rev. D83 (2011) 052012, arXiv:1102.1961.
    • [3] Particle Data Group, K. Nakamura et al., Review of particle physics, J. Phys. G37 (2010) 075021.
    • [4] Belle collaboration, K. Abe et al., Measurements of branching fractions and decay amplitudes in B ! J= K decays, Phys. Lett. B538 (2002) 11, arXiv:hep-ex/0205021.
    • [5] LHCb collaboration, A. A. Alves Jr. et al., The LHCb detector at the LHC, JINST 3 (2008) S08005.
    • [6] T. Sjostrand, S. Mrenna, and P. Skands, PYTHIA 6.4 Physics and manual, JHEP 05 (2006) 026, arXiv:hep-ph/0603175.
    • [7] I. Belyaev et al., Handling of the generation of primary events in Gauss, the LHCb simulation framework, Nuclear Science Symposium Conference Record (NSS/MIC) IEEE (2010) 1155.
    • [8] D. J. Lange, The EvtGen particle decay simulation package, Nucl. Instrum. Meth. A462 (2001) 152.
    • [9] P. Golonka and Z. Was, PHOTOS Monte Carlo: a precision tool for QED corrections in Z and W decays, Eur. Phys. J. C45 (2006) 97, arXiv:hep-ph/0506026.
    • [10] GEANT4 collaboration, J. Allison et al., Geant4 developments and applications, IEEE Trans. Nucl. Sci. 53 (2006) 270; GEANT4 collaboration, S. Agostinelli et al., GEANT4: a simulation toolkit, Nucl. Instrum. Meth. A506 (2003) 250.
    • [11] M. Clemencic et al., The LHCb simulation application, Gauss: design, evolution and experience, J. of Phys: Conf. Ser. 331 (2011) 032023.
    • [12] D. Mart nez Santos, Study of the very rare decay Bs ! + in LHCb, PhD thesis, University of Santiago de Compostela, 2010, CERN-THESIS-2010-068.
    • [13] D. Karlen, Using projections and correlations to approximate probability distributions, Comput. Phys. 12 (1998) 380, arXiv:physics/9805018.
    • [14] BABAR collaboration, B. Aubert et al., Search for the Z(4430) at BABAR, Phys. Rev. D79 (2009) 112001, arXiv:0811.0564.
    • [15] BABAR collaboration, B. Aubert et al., Time-integrated and time-dependent angular analyses of B ! J= K : a measurement of cos 2 with no sign ambiguity from strong phases, Phys. Rev. D71 (2005) 032005, arXiv:hep-ex/0411016.
    • [16] T. Skwarnicki, A study of the radiative cascade transitions between the Upsilon-prime and Upsilon resonances, PhD thesis, Institute of Nuclear Physics, Krakow, 1986, DESY-F31-86-02.
    • [17] LHCb collaboration, R. Aaij et al., Measurement of b-hadron masses, Phys. Lett. B708 (2012) 241, arXiv:1112.4896.
    • [18] D0 collaboration, V. Abazov et al., Measurement of the angular and lifetime parameters of the decays Bd0 ! J= K 0 and Bs0 ! J= , Phys. Rev. Lett. 102 (2009) 032001, arXiv:0810.0037.
    • [19] CDF collaboration, T. Aaltonen et al., Angular analysis of Bs0 ! J= and B ! J= K decays and measurement of s and s, CDF public note (2011), CDF public note 8950.
    • [20] T. du Pree, Search for a strange phase in beautiful oscillations, PhD thesis, Vrije Universiteit (Amsterdam), 2010, CERN-THESIS-2010-124.
    • [21] LHCb collaboration, R. Aaij et al., Measurement of b hadron production fractions in 7 TeV pp collisions, Phys. Rev. D85 (2012) 032008, arXiv:1111.2357.
    • [22] K. De Bruyn et al., Branching ratio measurements of Bs decays, Phys. Rev. D86 (2012) 014027, arXiv:1204.1735.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Related to

  • egiEGI virtual organizations: lhcb

Cite this article