Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Marcus, Paula Louise
Languages: English
Types: Doctoral thesis
Subjects: QH301
Articular cartilage is an avascular and aneural tissue and this is, in part, attributable to its low intrinsic capacity for repair after injury. Research is now focusing on alternate cell sources for tissue engineering of damaged cartilage, and recently a population of progenitor cells has been identified within the surface zone of bovine articular cartilage. These cells are capable of differentiating along a variety of mesenchymal lineages and are thought to be required for the appositional growth of the cartilage. The aims of this thesis were to further characterise these cells and determine factors affecting their differentiation. Prolonged growth of the clonal cells in culture was found to alter the ability of the cells to differentiate into a hyaline-like tissue, although these changes didn't always result in a decrease in the chondrogenic capacity. The rate of cell growth was also found to slightly affect the ability of the cells to differentiate, with more rapidly growing cells producing a matrix high in glycosaminoglycans. After short term culture, the cells also altered their expression of three different glycosaminoglycans sulphate epitopes 3B3(-), 4C3 and 7D4. When injected intramuscularly, the chondroprogenitor cells failed to form cartilage pellets despite expressing cartilage related genes. The progenitor cells also appeared unable to functionally engraft into the surrounding tissue, although one clonal cell line expressed the endothelial marker PECAM-1. Within this study we also assessed the ability of the chondroprogenitor cells to express connexins, and form functional gap junctions. The cells were found to fluctuate their connexin expression, although they maintained Cx43 expression throughout culture. Using a novel ultrasound standing wave trap, it was found that the cells failed to upregulate connexin after cell contact resulting in non-functional junctions, whilst the cells were able to form functional gap junctions with terminally differentiated chondrocytes. Treating the clonal cells with growth factors to enhance chondrogenesis also failed to cause the cells to functionally communicate. Finally we looked at the cellular organisation of the tissue to determine if paired cells within the surface zone of the cartilage may contain a progenitor population. These paired cells labelled positively for Notch-1, which is known to affect the clonality of the progenitor cells and could possibly signify the presence of the progenitor cell population. Cellular interactions are vital for controlling and coordinating cell differentiation, and manipulating cellular interactions could be an excellent way to enhance the chondrogenic differentiation of the cells and possibly improve tissue integration.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Nishida, K., Inoue, H. and Murakami, T. (1995). Immunohistochemical demonstration o f fibronectin in the most superficial layer of normal rabbit articular cartilage. Ann Rheum Dis 54, 995-8.
    • O'Driscoll, S. W. (1999). Articular cartilage regeneration using periosteum. Clin Orthop Relat Res, SI 86-203.
    • Oberlender, S. A. and Tuan, R. S. (1994). Expression and functional involvement o f N-cadherin in embryonic limb chondrogenesis. Development 120, 177-87.
    • Odorico, J. S., Kaufman, D. S. and Thomson, J. A. (2001). Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193-204.
    • Oyamada, Y., Komatsu, K., Kimura, H., Mori, M. and Oyamada, M. (1996). Differential regulation o f gap junction protein (connexin) genes during cardiomyocytic differentiation o f mouse embryonic stem cells in vitro. Exp Cell Res 229, 318-26.
    • Pacifici, M. (1995). Tenascin-C and the development of articular cartilage. Matrix Biol 14, 689-98.
    • Pacifici, M., £ . Koyama, T. Kirsch, J.L. Leatherman, and E.B. Golden. (1999). Involvement o f Tenascin C and Syndecan-3 in the development o f chick limb diarthrodial joints. In Biology o f the synovial joints. In Biology o f the Synovial Joint, (ed. B. C. C.W. Archer, M. Benjamin, and J.R. Ralphs), pp. 23-40: Harwood Academic Press.
    • Paul, D. L. (1995). New functions for gap junctions. Curr Opin Cell Biol 7, Petit, B., Masuda, K., D'Souza, A. L., Often, L., Pietryla, D., Hartmann, D. J., Morris, N. P., Uebelhart, D., Schmid, T. M. and Thonar, E. J. (1996). Characterization o f crosslinked collagens synthesized by mature articular chondrocytes cultured in alginate beads: comparison o f two distinct matrix compartments. Exp Cell Res 225, 151-61.
    • Piera-Velazquez, S., Jimenez, S. A. and Stokes, D. (2002). Increased life span o f human osteoarthritic chondrocytes by exogenous expression o f telomerase. Arthritis Rheum 46, 683-93.
    • Pierschbacher, M. D. and Ruoslahti, E. (1984). Cell attachment activity of fibronectin can be duplicated by small synthetic fragments o f the molecule. Nature 309, 30-3.
    • Pittenger, M., Mackay, A., Beck, S., Jaiswal, R., Douglas, R., Mosca, J., Moorman, M., Simonetti, D., Craig, S. and Marshak, D. (1999). Multilineage potential o f adult human mesenchymal stem cells. Science 284, 143-147.
    • Poole, C. A. (1997). Articular cartilage chondrons: form, function and failure. J A n a t 191 (P t 1), 1-13.
    • Poole, C. A., Ayad, S. and Schofield, J. R. (1988). Chondrons from articular cartilage: I. Immunolocalization o f type VI collagen in the pericellular capsule of isolated canine tibial chondrons. J Cell Sci 90 ( Pt 4), 635-43.
    • Poole, C. A., Flint, M. H. and Beaumont, B. W. (1987). Chondrons in cartilage: ultrastructural analysis o f the pericellular microenvironment in adult human articular cartilages. J Orthop Res 5, 509-22.
    • Pourreyron, C., Dumortier, J., Ratineau, C., Nejjari, M., Beatrix, O., Jacquier, M. F., Remy, L., Chayvialle, J. A. and Scoazec, J. Y. (2003). Agedependent variations o f human and rat colon myofibroblasts in culture: Influence on their functional interactions with colon cancer cells. I n tJ Cancer 104, 28-35.
    • Prockop, D. J. (2003). Further proof o f the plasticity o f adult stem cells and their role in tissue repair. J Cell Biol 160, 807-9.
    • Ralphs, J. R., Benjamin, M., Waggett, A. D., Russell, D. C., Messner, K. and Gao, J. (1998). Regional differences in cell shape and gap junction expression in rat Achilles tendon: relation to fibrocartilage differentiation. JA nat 193 ( Pt 2), 215- 22.
    • Redler, I., Mow, V. C., Zimny, M. L. and Mansell, J. (1975). The ultrastructure and biomechanical significance of the tidemark of articular cartilage. Clin Orthop Relat Res, 357-62.
    • Redman, S. N., Oldfield, S. F. and Archer, C. W. (2005). Current strategies for articular cartilage repair. Eur Cell Mater 9, 23-32; discussion 23-32.
    • Rees, S. G., Davies, J. R., Tudor, D., Flannery, C. R., Hughes, C. E., Dent, C. M. and Caterson, B. (2002). Immunolocalisation and expression of proteoglycan 4 (cartilage superficial zone proteoglycan) in tendon. Matrix Biol 21, 593-602.
    • Reyes, M., Lund, T., Lenvik, T., Aguiar, D., Koodie, L. and Verfaillie, C. M. (2001). Purification and ex vivo expansion o f postnatal human marrow mesodermal progenitor cells. B lood98, 2615-25.
    • Rhee, D. K., Marcelino, J., Baker, M., Gong, Y., Smits, P., Lefebvre, V., Jay, G. D., Stewart, M., Wang, H., Warman, M. L. et al. (2005). The secreted glycoprotein lubricin protects cartilage surfaces and inhibits synovial cell overgrowth. J Clin Invest 115, 622-31.
    • Richardson, K., Khan, I. M. and Archer, C. W. (2006). Identifying progenitor cells within articular cartilage. Eur Cell Mater 12(suppl. 1), 70.
    • Roberts, S., McCall, I. W., Darby, A. J., Menage, J., Evans, H., Harrison, P. E. and Richardson, J. B. (2003). Autologous chondrocyte implantation for cartilage repair: monitoring its success by magnetic resonance imaging and histology. Arthritis Res Ther 5, R60-73.
    • Romanello, M., Pani, B., Bicego, M. and D'Andrea, P. (2001). Mechanically induced ATP release from human osteoblastic cells. Biochem Biophys Res Commun 289, 1275-81.
    • Rombouts, W. and Ploemacher, R. (2003). Primary murine MSC show highly efficient homing to the bone marrow but lose homing ability following culture. Leukemia 17, 160-170.
    • Roughley, P. J. (2001). Articular cartilage and changes in arthritis: noncollagenous proteins and proteoglycans in the extracellular matrix of cartilage. Arthritis Res 3, 342-7.
    • Roughley, P. J. and White, R. J. (1980). Age-related changes in the structure o f the proteoglycan subunits from human articular cartilage. J Biol Chem 255, 217- 24.
    • Rozental, R., Morales, M., Mehler, M. F., Urban, M., Kremer, M., Dermietzel, R., Kessler, J. A. and Spray, D. C. (1998). Changes in the properties of gap junctions during neuronal differentiation o f hippocampal progenitor cells. J Neurosci 18, 1753-62.
    • Rudnicki, J. A. and Brown, A. M. (1997). Inhibition of chondrogenesis by Wnt gene expression in vivo and in vitro. Dev Biol 185, 104-18.
    • Ryan, M. C. and Sandell, L. J. (1990). Differential expression of a cysteinerich domain in the amino-terminal propeptide of type II (cartilage) procollagen by alternative splicing of mRNA. J Biol Chem 265, 10334-9.
    • Salmivirta, M., Elenius, K., Vainio, S., Hofer, U., Chiquet-Ehrismann, R., Thesleff, I. and Jalkanen, M. (1991). Syndecan from embryonic tooth mesenchyme binds tenascin. J Biol Chem 266, 7733-9.
    • Salter, D. M., Hughes, D. E., Simpson, R. and Gardner, D. L. (1992). Integrin expression by human articular chondrocytes. Br J Rheumatol 31, 231-4.
    • Sandell, L., Nalin, A. and Zhu, Y. (1999). Collagens in joint tissue. In Biology o f the Synovial Joint, (eds C. Archer B. Caterson M. Benjamin and J. Ralphs), pp. 121-133: Harwood Academic.
    • Sandell, L. J., Morris, N., Robbins, J. R. and Goldring, M. B. (1991). Alternatively spliced type II procollagen mRNAs define distinct populations of cells during vertebral development: differential expression of the amino-propeptide. J Cell Biol 114, 1307-19.
    • Schirrmacher, K., Schmitz, L, Winterhager, E., Traub, O., Brummer, F., Jones, D. and Bingmann, D. (1992). Characterization of gap junctions between osteoblast-like cells in culture. Calcif Tissue Int 51, 285-90.
    • Schmidt, T. A., Schumacher, B. L., Klein, T. J., Voegtline, M. S. and Sah, R. L. (2004). Synthesis of proteoglycan 4 by chondrocyte subpopulations in cartilage explants, monolayer cultures, and resurfaced cartilage cultures. Arthritis Rheum 50, 2849-57.
    • Schumacher, B. L., Block, J. A., Schmid, T. M., Aydelotte, M. B. and Kuettner, K. E. (1994). A novel proteoglycan synthesized and secreted by chondrocytes o f the superficial zone of articular cartilage. Arch Biochem Biophys 311, 144-52.
    • Schumacher, B. L., Su, J. L., Lindley, K. M., Kuettner, K. E. and Cole, A. A. (2002). Horizontally oriented clusters of multiple chondrons in the superficial zone of ankle, but not knee articular cartilage. Anat Rec 266, 241-8.
    • Schwab, W., Hofer, A. and Kasper, M. (1998). Immunohistochemical distribution of connexin 43 in the cartilage o f rats and mice. Histochem J 30, 413-9.
    • Shapiro, F., Koide, S. and Glimcher, M. J. (1993). Cell origin and differentiation in the repair of full-thickness defects of articular cartilage. JBone Joint Surg Am 75, 532-53.
    • Sharma, L. (2001). Epidemiology o f osteoarthritis. In Osteoarthritis: Diagnosis and medical/surgical management, (eds R. Moskowitz D. Howell R. Altman J. Buckwalter and V. Goldberg), pp. 3-28. Philadelphia: W.B. Saunders Company.
    • Shen, G. (2005). The role o f type X collagen in facilitating and regulating endochondral ossification of articular cartilage. Orthod Craniofac Res 8, 11-7.
    • Shida, J., Jingushi, S., Izumi, T., Iwaki, A. and Sugioka, Y. (1996). Basic fibroblast growth factor stimulates articular cartilage enlargement in young rats in vivo. J Orthop Res 14, 265-72.
    • Shimazu, A., Nah, H. D., Kirsch, T., Koyama, E., Leatherman, J. L., Golden, E. B., Kosher, R. A. and Pacifici, M. (1996). Syndecan-3 and the control of chondrocyte proliferation during endochondral ossification. Exp Cell Res 229, 126- 36.
    • Slater, R. R., Jr., Bayliss, M. T., Lachiewicz, P. F., Visco, D. M. and Caterson, B. (1995). Monoclonal antibodies that detect biochemical markers of arthritis in humans. Arthritis Rheum 38, 655-9.
    • Sorrell, J. M., Mahmoodian, F., Schafer, I. A., Davis, B. and Caterson, B. (1990). Identification o f monoclonal antibodies that recognize novel epitopes in native chondroitin/dermatan sulfate glycosaminoglycan chains: their use in mapping functionally distinct domains of human skin. J Histochem Cytochem 38, 393-402.
    • Sosinsky, G. E. and Nicholson, B. J. (2005). Structural organization of gap junction channels. Biochim Biophys Acta 1711, 99-125.
    • Spengler, J. F. and Coakley, W. T. (2003). Ultrasonic trap to monitor morphology and stability o f developing microparticle aggregates. Langmuir 19, 3635- 3642.
    • Stains, J. P. and Civitelli, R. (2005a). Cell-cell interactions in regulating osteogenesis and osteoblast function. Birth Defects Res C Embryo Today 75, 72-80.
    • Stains, J. P. and Civitelli, R. (2005b). Gap junctions in skeletal development and function. Biochim Biophys Acta 1719, 69-81.
    • Stockwell, R. A. (1978). Chondrocytes. J Clin Pathol Suppl (R Coll Pathol) 12, 7-13.
    • Stockwell, R. A. (1979). Biology o f cartilage cells. London: Cambridge University Press.
    • Stokes, D. G., Liu, G., Coimbra, I. B., Piera-Velazquez, S., Crowl, R. M. and Jimenez, S. A. (2002). Assessment of the gene expression profile of differentiated and dedifferentiated human fetal chondrocytes by microarray analysis. Arthritis Rheum 46, 404-19.
    • Stokes, D. G., Liu, G., Dharmavaram, R., Hawkins, D., Piera-Velazquez, S. and Jimenez, S. A. (2001). Regulation of type-II collagen gene expression during human chondrocyte de-differentiation and recovery of chondrocyte-specific phenotype in culture involves Sry-type high-mobility-group box (SOX) transcription factors. Biochem J 360, 461-70.
    • Storm, E. E., Huynh, T. V., Copeland, N. G., Jenkins, N. A., Kingsley, D. M. and Lee, S. J. (1994). Limb alterations in brachypodism mice due to mutations in a new member o f the TGF beta-superfamily. Nature 368, 639-43.
    • Storm, E. E. and Kingsley, D. M. (1999). GDF5 coordinates bone and joint formation during digit development. Dev Biol 209, 11-27.
    • Tandon, A. and Fraser, P. (2002). The presenilins. Genome Biol 3, reviews3014.
    • Tew, S. R., Kwan, A. P., Hann, A., Thomson, B. M. and Archer, C. W. (2000). The reactions o f articular cartilage to experimental wounding: role of apoptosis. Arthritis Rheum 43, 215-25.
    • Thonar, E. J., Buckwalter, J. A. and Kuettner, K. E. (1986). Maturationrelated differences in the structure and composition of proteoglycans synthesized by chondrocytes from bovine articular cartilage. J Biol Chem 261, 2467-74.
    • Thornemo, M., Tallheden, T., Sjogren Jansson, E., Larsson, A., Lovstedt, K., Nannmark, U., Brittberg, M. and Lindahl, A. (2005). Clonal Populations of Chondrocytes with Progenitor Properties Identified within Human Articular Cartilage. Cells Tissues Organs 180, 141-50.
    • Tropel, P., Noel, D., Platet, N., Legrand, P., Benabid, A. L. and Berger, F. (2004). Isolation and characterisation o f mesenchymal stem cells from adult mouse bone marrow. Exp Cell Res 295, 395-406.
    • Tsuchiya, K., Chen, G., Ushida, T., Matsu no, T. and Tateishi, T. (2004). The effect of coculture o f chondrocytes with mesenchymal stem cells on their cartilaginous phenotype in vitro. Materials Science and Engineering: C 24, 391-396.
    • Uematsu, K., Hattori, K., Ishimoto, Y., Yamauchi, J., Habata, T., Takakura, Y., Ohgushi, H., Fukuchi, T. and Sato, M. (2005). Cartilage regeneration using mesenchymal stem cells and a three-dimensional poly-lacticglycolic acid (PLGA) scaffold. Biomaterials 26, 4273-9.
    • Valcourt, U., Ronziere, M. C., Winkler, P., Rosen, V., Herbage, D. and Mallein-Gerin, F. (1999). Different effects of bone morphogenetic proteins 2, 4, 12, and 13 on the expression o f cartilage and bone markers in the MC615 chondrocyte cell line. Exp Cell Res 251, 264-74.
    • van der Rest, M. and Mayne, R. (1988). Type IX collagen proteoglycan from cartilage is covalently cross-linked to type II collagen. J Biol Chem 263, 1615-8.
    • Veje, K-, Hyllested-Winge, J. L. and Ostergaard, K. (2003). Topographic and zonal distribution o f tenascin in human articular cartilage from femoral heads: normal versus mild and severe osteoarthritis. Osteoarthritis Cartilage 11, 217-27.
    • Villar-Suarez, V., Calles-Venal, I., Bravo, I. G., Fernandez-AIvarez, J. G., Fernandez-Caso, M. and Villar-Lacilla, J. M. (2004). Differential Behavior Between Isolated and Aggregated Rabbit Auricular Chondrocytes on Plastic Surfaces. J Biomed Biotechnol 2004, 86-92.
    • Waggett, A. D., Benjamin, M. and Ralphs, J. R. (2006). Connexin 32 and 43 gap junctions differentially modulate tenocyte response to cyclic mechanical load. Eur J Cell Biol 85, 1145-54.
    • Wakitani, S., Goto, T., Pineda, S. J., Young, R. G., Mansour, J. M., Caplan, A. I. and Goldberg, V. M. (1994). Mesenchymal cell-based repair of large, ful1-thickness defects o f articular cartilage. J Bone Joint Surg Am 76, 579-92.
    • Wakitani, S., Kimura, T., Hirooka, A., Ochil, T., Yoneda, M., Yasui, N., Owaki, H. and Ono, K. (1989). Repair of rabbit articular surfaces with allograft chondrocytes embedded in collagen gel. The Journal o fBone and Joint Surgery 71-B, 74-80.
    • Walchli, C., Koch, M., Chiquet, M., Odermatt, B. F. and Trueb, B. (1994). Tissue-specific expression o f the fibril-associated collagens XII and XIV. J Cell Sci 107 (P t 2), 669-81.
    • Waldman, S. D., Grynpas, M. D., Pilliar, R. M. and Kandel, R. A. (2003). The use o f specific chondrocyte populations to modulate the properties o f tissueengineered cartilage. J Orthop Res 21, 132-8.
    • Wardale, R. J. and Duance, V. C. (1993). Quantification and immunolocalisation o f porcine articular and growth plate cartilage collagens. J Cell Sci 105 ( P t 4), 975-84.
    • Watt, S. L., Lunstrum, G. P., McDonough, A. M., Keene, D. R., Burgeson, R. E. and Morris, N. P. (1992). Characterization o f collagen types XII and XIV from fetal bovine cartilage. J Biol Chem 267, 20093-9.
    • Watton, S., Dunance, V. and Fryer, P. (1988). Type IX collagen: a possible function in articular cartilage. FEBS Letters 234, 79-82.
    • Weinmaster, G. (1997). The ins and outs o f notch signaling. Mol Cell Neurosci 9, 91-102.
    • Whetton, A. D. and Graham, G. J. (1999). Homing and mobilization in the stem cell niche. Trends Cell Biol 9, 233-8.
    • Wieland, H. A., Michaelis, M., Kirschbaum, B. J. and Rudolphi, K. A. (2005). Osteoarthritis - an unbeatable disease? Nat Rev Drug Discov 4, 331-44.
    • Wight, T. N., Kinsella, M. G. and Qwarnstrom, E. E. (1992). The role of proteoglycans in cell adhesion, migration and proliferation. Curr Opin Cell Biol 4, 793-801.
    • Williams, E. D., Lowes, A. P., Williams, D. and Williams, G. T. (1992). A stem cell niche theory o f intestinal crypt maintenance based on a study of somatic mutation in colonic mucosa. Am J Pathol 141, 773-6.
    • Woo, S. L., Kwan, M. K., Lee, T. Q., Field, F. P., Kleiner, J. B. and Coutts, R. D. (1987). Perichondrial autograft for articular cartilage. Shear modulus of neocartilage studied in rabbits. Acta Orthop Scand 58, 510-5.
    • Wotton, S. F., Jeacocke, R. E., Maciewicz, R. A., Wardale, R. J. and Duance, V. C. (1991). The application of scanning confocal microscopy in cartilage research. Histochem J 23, 328-35.
    • Wu, J. J. and Eyre, D. R. (1989). Covalent interactions of type IX collagen in cartilage. Connect Tissue Res 20, 241-6.
    • Yanagisawa, M., Suzuki, N., Mitsui, N., Koyama, Y., Otsuka, K. and Shimizu, N. (2007). Effects o f compressive force on the differentiation of pluripotent mesenchymal cells. Life Sci 81, 405-12.
    • Yang, S., Lin, G., Tan, Y. Q., Zhou, D., Deng, L. Y., Cheng, D. H., Luo, S. W., Liu, T. C., Zhou, X. Y., Sun, Z. et al. (2008). Tumor progression of cultureadapted human embryonic stem cells during long-term culture. Genes Chromosomes Cancer 47, 665-79.
    • Yeh, A. T., Hammer-Wilson, M. J., Van Sickle, D. C., Benton, H. P., Zoumi, A., Tromberg, B. J. and Peavy, G. M. (2005). Nonlinear optical microscopy o f articular cartilage. Osteoarthritis Cartilage 13, 345-52.
    • Youn, I., Choi, J. B., Cao, L., Setton, L. A. and Guilak, F. (2006). Zonal variations in the three-dimensional morphology o f the chondron measured in situ using confocal microscopy. Osteoarthritis Cartilage 14, 889-97.
    • Young, R. D., Lawrence, P. A., Duance, V. C., Aigner, T. and Monaghan, P. (2000). Immunolocalization o f collagen types II and III in single fibrils o f human articular cartilage. J Histochem Cytochem 48, 423-32.
    • Zhang, M. and Thorgeirsson, S. S. (1994). Modulation of connexins during differentiation o f oval cells into hepatocytes. Exp Cell Res 213, 37-42.
    • Zhang, X., Mitsuru, A., Igura, K., Takahashi, K., Ichinose, S., Yamaguchi, S. and Takahashi, T. A. (2006). Mesenchymal progenitor cells derived from chorionic villi o f human placenta for cartilage tissue engineering. Biochem Biophys Res Commun 340, 944-52.
    • Zimmermann, B. (1984). Assembly and disassembly o f gap junctions during mesenchymal cell condensation and early chondrogenesis in limb buds of mouse embryos. JAnat 138 ( Pt 2), 351-63.
    • Zou, H., Wieser, R., Massague, J. and Niswander, L. (1997). Distinct roles of type I bone morphogenic protien receptors in the formation and differentiation of cartilage. Genes and Development 11, 2191-2203. European Cells and Materials Vol. 16. Suppl. 2, 2008 (page 48)
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article