Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Yap, Y.F.; Vargas, F.M.; Chai, J.C. (2013)
Publisher: Elsevier BV
Journal: Applied Mathematical Modelling
Languages: English
Types: Article
Subjects: Applied Mathematics, TJ, Modelling and Simulation
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1. E.S. Boek, A.D. Wilson, J.T. Padding, T.F. Headen and J.P. Crawshaw, Multi-scale Simulation and Experimental Studies of Asphaltene Aggregation and Deposition in Capillary Flow, Energy & Fuels 24 (2010) 2361-2368.
    • 2. D. Broseta, M. Robin, T. Savvidis, C. Fejean, M. Durandeau and H. Zhou, Detection of Asphaltene Deposition by Capillary Flow Measurements, SPE/DOE Improved Oil Recovery Symposium, Apr. 3-5, 2000, Tulsa, Oklahoma.
    • 3. Z. Zhu, K.W. Sand and P.J. Teevens, A numerical study of under-deposit pitting corrosion in sour petroleum pipelines, Northern Area Western Conference, Feb. 15-18, 2010, Calgary, Alberta.
    • 4. Z. Chen and S. Liu, Simulation of Copper Electroplating Fill Process of Through Silicon Via, Packaging Technology 3 (2010) 433-437.
    • 5. P. Rath, J.C. Chai, Y.C. Lam and V.M. Murukeshan, A total concentration fixed-grid method for two-dimensional wet chemical etching, J. Heat Transfer 129 (2007) 509-516.
    • 6. P. Rath and J.C. Chai, Modelling convection-driven diffusion-controlled wet chemical etching using a total-concentration fixed-grid method, Num. Heat Transfer B 53 (2008) 143-159.
    • 7. N. Shamsundar and E.M. Sparrow, Analysis of multidimensional conduction phase change via the enthalpy model, J. of Heat Transfer 97 (1975) 333-340.
    • 8. V.R. Voller, Numerical Methods for phase-change problem, Handbook of Numerical Heat Transfer 2nd ed., John Wiley & Sons Inc, Hoboken, New Jersey, 2006.
    • 9. Q. Ge., Y.F. Yap, F.M. Vargas, M. Zhang and J.C. Chai, A Total Concentration Method for Modeling of Deposition, Numer. Heat Transfer, Part B 61 (2012) 311-328.
    • 10. C.W. Hirt and B.D. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys. 39 (1981) 201-225.
    • 11. J.J. Helmsen, Volume of fluids methods applied to etching and deposition, American Physical Society, Gaseous Electronics Conference 1996, Oct. 21-24.
    • 12. J. Helmsen, E. Puckett, P. Colella, and M. Dorr, Two new methods for simulating photolithography development in 3D, Proc. SPIE 2726 (1996) 253-261.
    • 13. S. Osher and J.A. Sethian, Fronts propagating with curvature-dependent speed: Algorithms based on Hamilton-Jacobi formulations, J. Comput. Phys. 79 (1988) 12.
    • 14. D. Adalsteinsson and J.A. Sethian, A level-set approach to a unified model for etching, deposition and lithography I: Algorithm and two-dimensional simulations, J. Comput. Phys. 120 (1995) 128-144.
    • 15. D. Adalsteinsson and J.A. Sethian, A level-set approach to a unified model for etching, deposition and lithography II: Three-dimensional simulations, J. Comput. Phys. 122 (1995) 348- 366.
    • 16. J.A. Sethian and D. Adalsteinsson, An Overview of Level Set Methods for Etching, Deposition, and Lithography Development, IEEE Trans. Semiconductor Manufacturing 10-1 (1997) 167- 184.
    • 17. F.M. Vargas, J.L. Creek and W.G. Chapman, On the Development of an Asphaltene Deposition Simulator, Energy Fuels 2010 (24) 2294-2299.
    • 18. A.S. Kurup, F.M. Vargas, J. Wang, J. Buckley , J.L. Creek, Hariprasad, J. Subramani and W.G. Chapman, Development and Application of an Asphaltene Deposition Tool (ADEPT) for Well Bores, Energy & Fuels 25 (2011) 4506-4516.
    • 19. D. Wheeler, D. Josell and T.P. Moffat, Modeling Superconformal Electrodeposition Using The Level Set Method, J. Electrochem. Soc. 150 (2003) C302-C310.
    • 20. H.A. Al-Mohssen and N.G. Hadjiconstantinou, Arbitrary-pressure chemical vapor deposition modeling using direct simulation Monte Carlo with nonlinear surface chemistry, J. Comput. Phys. 198 (2004) 617-627.
    • 21. C. Heitzinger and S. Selberherr, On the Topography Simulation of Memory Cell Trenches for Semiconductor Manufacturing Deposition Processes Using the Level Set Method, Proc. of 16th European Simulation Multiconference: Modelling and Simulation 2002 (ESM 2002), Jun. 3-5, Darmstadt, Germany, 653-660.
    • 22. C. Heitzinger, J. Fugger, O. Häberlen, and S. Selberherr, Simulation and Inverse Modeling of TEOS Deposition Processes Using a Fast Level Set Method, The 2002 Int. Conf. on Simulation of Semiconductor Processes and Devices, Sept. 4-6, Kobe, 191-194.
    • 23. J.A. Sethian and Y. Shan, Solving partial differential equations on irregular domains with moving interfaces, with applications to superconformal electrodeposition in semiconductor manufacturing, J. Comput. Phys. 227 (2008) 6411-6447.
    • 24. M. Hughes, N. Strussevitch, C. Bailey, K. McManus, J. Kaufmann, D. Flynn and M.P.Y. Desmulliez, Numerical algorithms for modelling electrodeposition: Tracking the deposition front under forced convection from megasonic agitation, Int. J. Numer. Methods Fluids 64 (2010) 237-268.
    • 25. D. Eskin, J. Ratulowski, K. Akbarzadeh and S. Pan, Modelling asphaltene deposition in turbulent pipeline flows, The Canadian J. Chem. Eng. 89 (2011) 421-441.
    • 26. A. Guha, Transport and Deposition of Particles in Turbulent and Laminar Flow, Annu. Rev. Fluid Mech. 40 (2008) 311-341.
    • 27. D. M. Mattox, Handbook of Physical Vapor Deposition (PVD) Processing, Noyes Publications, New Jersey, 1998.
    • 28. H.O. Pierson, Handbook of Chemical Vapor Deposition: Principles Technology and Applications, 2nd ed., Noyes Publications, New Jersey, 1999.
    • 29. M. Abdolzadeh, M.A. Mehrabian and A.S. Goharrizi, Numerical study to predict the particle deposition under the influence of operating forces on a tilted surface in the turbulent flow, Adv. Powder Tech. 22 (2011) 405-415.
    • 30. K.A. Lawal, V. Vesovic and E.S. Boek, Modeling Permeability Impairment in Porous Media due to Asphaltene Deposition under Dynamic Conditions, Energy & Fuels 25 (2011) 5647-5659.
    • 31. S. Chen, B. Merriman, S. Osher, and P. Smereka, A simple level set method for solving Stefan problems, J. Comput. Phys. 135 (1995) 8.
    • 32. M. Sussman, P. Smereka, S. Osher, A level set approach for computing solution to incompressible two-phase flow, J. Comput. Phys. 114 (1994) 146-159.
    • 33. D. Peng, B. Merriman, S. Osher, H. Zhao and M. Kang, A PDE-based fast local level-set method, J. Comput. Phys. 155 (1999) 410-438.
    • 34. Y.F. Yap, J.C. Chai, T.N. Wong, N.T. Nguyen, K.C. Toh and H.Y. Zhang, Particle transport in microchannels, Numer. Heat Transfer, Part B 51 (2007) 141-157.
    • 35. S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publisher, New York, 1980.
    • 36. H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2nd ed., Prentice Education Limited, England, 2007.
    • 37. G.-S. Jiang and D. Peng, Weighted ENO schemes for Hamilton-Jacobi equations, SIAM J. Sci. Comput. 21 (2000) 2126-2143.
    • 38. C.-W. Shu and S. Osher, Efficient Implementation of Essentially Non-Oscillatory Shock Capturing Schemes, J. Comput. Phys. 77 (1988) 439-471.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article