LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Pirneskoski, Annamari; Klappa, Peter; Lobell, Mario; Williamson, Richard A.; Byrne, Lee J.; Alanen, Heli I.; Salo, Kirsi E. H.; Kivirikkos, Kari I.; Freedman, Robert B.; Ruddock, Lloyd W. (2004)
Publisher: AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC, 9650 ROCKVILLE PIKE, BETHESDA, MD 20814-3996 USA
Languages: English
Types: Article
Subjects: Q
Disulfide bond formation in the endoplasmic reticulum of eukaryotes is catalyzed by the ubiquitously expressed enzyme protein disulfide isomerase (PDI). The effectiveness of PDI as a catalyst of native disulfide bond formation in folding polypeptides depends on the ability to catalyze disulfide-dithiol exchange, to bind non-native proteins, and to trigger conformational changes in the bound substrate, allowing access to buried cysteine residues. It is known that the b' domain of PDI provides the principal peptide binding site of PDI and that this domain is critical for catalysis of isomerization but not oxidation reactions in protein substrates. Here we use homology modeling to define more precisely the boundaries of the b' domain and show the existence of an intradomain linker between the b' and a' domains. We have expressed the recombinant b' domain thus defined; the stability and conformational properties of the recombinant product confirm the validity of the domain boundaries. We have modeled the tertiary structure of the b' domain and identified the primary substrate binding site within it. Mutations within this site, expressed both in the isolated domain and in full-length PDI, greatly reduce the binding affinity for small peptide substrates, with the greatest effect being I272W, a mutation that appears to have no structural effect.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article