LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cheng, F; Dupont, VAL; Twigg, MV (2016)
Publisher: Elsevier
Journal: Applied Catalysis A: General
Languages: English
Types: Article
Subjects: Process Chemistry and Technology, Catalysis
Temperature-programmed reduction (TPR) of a NiO/α-Al2O3 steam reforming catalyst with glucose under a N2 flow was investigated using TGA-FTIR technique. A series of catalyst samples obtained at different temperatures during the TPR were characterised by XRD, CHN elemental analysis, SEM-EDX and TPO. Results showed that the whole TPR covering from room temperature to 900 °C consisted of two reactive processes. They were glucose pyrolysis producing carbonaceous materials (char), and NiO reduction by the char resulting in CO2 as a main product. When the initial mass ratio of glucose to the catalyst was 1:10, the catalyst could be completely reduced without carbon remaining. Moreover, two mass loss peaks were observed at around 440 °C and 670 °C, respectively, during the reduction. Based on the experiments of char characterisation, H2 TPR and excess glucose TPR, a two-stage reduction mechanism was proposed. The first reduction stage was attributed to a solid reaction between NiO and char. The second stage was assigned to NiO being reduced by the CO produced by char gasification with CO2. Their apparent activation energies were 197 ± 19 kJ/mol and 316 ± 17 kJ/mol, respectively, estimated using the Kissinger method.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] J. Adanez, A. Abad, F. Garcia-Labiano, P. Gayan, L.F. de Diego, Prog. Energy Combust. Sci. 38 (2012) 215-282.
    • [2] V. Dupont, A.B. Ross, I. Hanley, M.V. Twigg, Int. J. Hydrogen Energy 32 (2007) 67-79.
    • [3] M. Ryden, A. Lyngfelt, T. Mattisson, Fuel 85 (2006) 1631-1641.
    • [4] M.M. Hossain, H.I. de Lasa, Chem. Eng. Sci. 63 (2008) 4433-4451.
    • [5] M. Johansson, T. Mattisson, A. Lyngfelt, A. Abad, Fuel 87 (2008) 988-1001.
    • [6] A. Cabello, P. Gayán, F. García-Labiano, L.F. de Diego, A. Abad, M.T. Izquierdo, J. Adánez, Appl. Catal. B: Environ. 147 (2014) 980-987.
    • [7] Q. Zafar, T. Mattisson, B. Gevert, Ind. Eng. Chem. Res. 44 (2005) 3485-3496.
    • [8] F. Cheng, Bio-compounds as Reducing Agents of Reforming Catalyst and Their Subsequent Steam Reforming Performance Thesis (Ph.D.), University of Leeds, 2014 (URI:) http://etheses.whiterose.ac.uk/id/eprint/7715.
    • [9] L.F. de Diego, M. Ortiz, J. Adanez, F. Garcia-Labiano, A. Abad, P. Gayan, Chem. Eng. J. 144 (2008) 289-298.
    • [10] J.T. Richardson, B. Turk, M.V. Twigg, Appl. Catal. A: Gen. 148 (1996) 97-112.
    • [11] J.T. Richardson, M. Lei, B. Turk, K. Forster, M.V. Twigg, Appl. Catal. A: Gen. 110 (1994) 217-237.
    • [12] D.R. Goodman, Catalyst Handbook, in: M.V. Twigg (Ed.), Wolfe Publishing Ltd., London, 1996, pp. 161-174.
    • [13] J. Sehested, Catal. Today 111 (2006) 103-110.
    • [14] B. Valle, B. Aramburu, A. Remiro, J. Bilbao, A.G. Gayubo, Appl. Catal. B: Environ. 147 (2014) 402-410.
    • [15] J.T. Richardson, R. Scates, M.V. Twigg, Appl. Catal. A Gen. 246 (2003) 137-150.
    • [16] J.T. Richardson, R.M. Scates, M.V. Twigg, Appl. Catal. A Gen. 267 (2004) 35-46.
    • [17] J. Szekely, C.I. Lin, H.Y. Sohn, Chem. Eng. Sci. 28 (1973) 1975-1989.
    • [18] S.S.A. Syed-Hassan, C.Z. Li, Appl. Catal. A Gen. 398 (2011) 187-194.
    • [19] K.M. Ostyn, C.B. Carter, Surf. Sci. 121 (1982) 360-374.
    • [20] J.T. Richardson, B. Turk, M. Lei, K. Forster, M.V. Twigg, Appl. Catal. A Gen. 83 (1992) 87-101.
    • [21] Y. Iida, K. Shimada, Bull. Chem. Soc. Jpn. 33 (1960) 8-11.
    • [22] Y. Iida, K. Shimada, Bull. Chem. Soc. Jpn. 33 (1960) 1194-1196.
    • [23] W.J. Lee, C.-Z. Li, Appl. Catal. A Gen. 316 (2007) 90-99.
    • [24] G.W. Huber, S. Iborra, A. Corma, Chem. Rev. 106 (2006) 4044-4098.
    • [25] D. Wang, S. Czernik, D. Montane, M. Mann, E. Chornet, Ind. Eng. Chem. Res. 36 (1997) 1507-1518.
    • [26] X. Hu, G.X. Lu, Appl. Catal. B Environ. 88 (2009) 376-385.
    • [27] P. Pimenidou, G. Rickett, V. Dupont, M.V. Twigg, Bioresour. Technol. 101 (2010) 6389-6397.
    • [28] P. Pimenidou, G. Rickett, V. Dupont, M.V. Twigg, Bioresour. Technol. 101 (2010) 9279-9286.
    • [29] N. Giannakeas, A. Lea-Langton, V. Dupont, M.V. Twigg, Appl. Catal. B-Environ. 126 (2012) 249-257.
    • [30] A. Lea-Langton, R.M. Zin, V. Dupont, M.V. Twigg, Int. J. Hydrogen Energy 37 (2012) 2037-2043.
    • [31] L.B. McCusker, R.B. Von Dreele, D.E. Cox, D. Louer, P. Scardi, J. Appl. Crystallogr. 32 (1999) 36-50.
    • [32] M.S. Mettler, A.D. Paulsen, D.G. Vlachos, P.J. Dauenhauer, Green Chem. 14 (2012) 1284-1288.
    • [33] S.K. Sharma, F.J. Vastola, P.L. Walker, Carbon 35 (1997) 535-541.
    • [34] J. Barbier, Appl. Catal. 23 (1986) 225-243.
    • [35] A. Remiro, B. Valle, A.T. Aguayo, J. Bilbao, A.G. Gayubo, Fuel Process. Technol. 115 (2013) 222-232.
    • [36] M.M. Hossain, H.I. de Lasa, AIChE J. 53 (2007) 1817-1829.
    • [37] X. Hu, G. Lu, Green Chem. 11 (2009) 724-732.
    • [38] M. El-Guindy, W. Davenport, Metall. Trans. 1 (1970) 1729-1734.
    • [39] Y. Cao, B. Casenas, W.-P. Pan, Energy Fuels 20 (2006) 1845-1854.
    • [40] B. Jankovic, B. Adnadevic, S. Mentus, Chem. Eng. Sci. 63 (2008) 567-575.
    • [41] T.A. Utigard, M. Wu, G. Plascencia, T. Marin, Chem. Eng. Sci. 60 (2005) 2061-2068.
    • [42] M. Ishida, H.G. Jin, T. Okamoto, Energy Fuels 10 (1996) 958-963.
    • [43] Q. Zafar, A. Abad, T. Mattisson, B. Gevert, Energy Fuels 21 (2007) 610-618.
    • [44] F. Wang, X. Zeng, Y. Wang, H. Su, J. Yu, G. Xu, Fuel 164 (2016) 403-409.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article