Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Krishnanathan, K.; Anderson, S.R.; Billings, S.A.; Kadirkamanathan, V. (2015)
Publisher: Taylor & Francis
Languages: English
Types: Article
In this paper, we derive a system identification framework for continuous-time nonlinear systems, for the first time using a simulation-focused computational Bayesian approach. Simulation approaches to nonlinear system identification have been shown to outperform regression methods under certain conditions, such as non-persistently exciting inputs and fast-sampling. We use the approximate Bayesian computation (ABC) algorithm to perform simulation-based inference of model parameters. The framework has the following main advantages: (1) parameter distributions are intrinsically generated, giving the user a clear description of uncertainty, (2) the simulation approach avoids the difficult problem of estimating signal derivatives as is common with other continuous-time methods, and (3) as noted above, the simulation approach improves identification under conditions of non-persistently exciting inputs and fast-sampling. Term selection is performed by judging parameter significance using parameter distributions that are intrinsically generated as part of the ABC procedure. The results from a numerical example demonstrate that the method performs well in noisy scenarios, especially in comparison to competing techniques that rely on signal derivative estimation.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anderson, S. R., & Kadirkamanathan, V. (2007). Modelling and identification of non-linear deterministic systems in the delta-domain. Automatica, 43 (11), 1859-1868.
    • Anderson, S. R., Lepora, N. F., Porrill, J., & Dean, P. (2010). Nonlinear dynamic modeling of isometric force production in primate eye muscle. IEEE Transactions on Biomedical Engineering , 57 (7), 1554-1567.
    • Baldacchino, T., Anderson, S. R., & Kadirkamanathan, V. (2012). Structure detection and parameter estimation for NARX models in a unified EM framework. Automatica, 48 (5), 857-865.
    • Baldacchino, T., Anderson, S. R., & Kadirkamanathan, V. (2013). Computational system identification for Bayesian NARMAX modelling. Automatica, 49 , 2641-2651.
    • Beaumont, M. A. (2010). Approximate Bayesian computation in evolution and ecology. Annual Review of Ecology, Evolution, and Systematics, 41 , 379-406.
    • Beaumont, M. A., Zhang, W., & Balding, D. J. . (2002). Approximate Bayesian computation in population genetics. Genetics, 162 , 2025-2035.
    • Billings, S. A. (2013). Nonlinear system identification: Narmax, methods in the time, frequency, and spatiotemporal domains. Wiley.
    • Cha, S.-H., & Srihari, S. N. (2002). On measuring the distance between histograms. Pattern Recognition, 35 (6), 1355-1370.
    • Chen, S., Billings, S. A., & Luo, W. (1989). Orthogonal least squares methods and their application to non-linear system identification. International Journal of control , 50 (5), 1873-1896.
    • Coca, D., & Billings, S. (1999). A direct approach to identification of nonlinear differential models from discrete data. Mechanical Systems and Signal Processing, 13 (5), 739-755.
    • Falsone, A., Piroddi, L., & Prandini, M. (2015). A randomized algorithm for nonlinear model structure selection. Automatica, 60 , 227-238.
    • Garnier, H., & Wang, L. (2008). Identification of continuous-time models from sampled data. London: Springer.
    • Gevers, M. (2005). Identification for control: From the early achievements to the revival of experiment design. European Journal of Control , 11 (4), 335-352.
    • Guo, Y., Guo, L. Z., Billings, S. A., & Wei, H.-L. (2015). Identification of continuous-time models for nonlinear dynamic systems from discrete data. International Journal of Systems Science(ahead-ofprint), 1-11.
    • Henriksen, S. J., Wills, A., Schon, T., & Ninness, B. (2012). Parallel implementation of particle MCMC methods on a GPU. In 16th ifac symposium on system identification, brussels, belgium (pp. 1143- 1148).
    • Holmes, G. R., Anderson, S. R., Dixon, G., Robertson, A. L., Reyes-Aldasoro, C. C., Billings, S. A., . . . Kadirkamanathan, V. (2012). Repelled from the wound, or randomly dispersed? Reverse migration behaviour of neutrophils characterized by dynamic modelling. Journal of The Royal Society Interface, 9 (77), 3229-3239.
    • Krishnanathan, K., Anderson, S. R., Billings, S. A., & Kadirkamanathan, V. (2012). A data-driven framework for identifying nonlinear dynamic models of genetic parts. ACS Synthetic Biology, 1 (8), 375-384.
    • Kukreja, S. L., Galiana, H. L., & Kearney, R. E. (2003). NARMAX representation and identification of ankle dynamics. IEEE Transactions on Biomedical Engineering, 50 (1), 70-81.
    • Kukreja, S. L., Galiana, H. L., & Kearney, R. E. (2004). A bootstrap method for structure detection of NARMAX models. International Journal of Control , 77 (2), 132-143.
    • Lee, A., Yau, C., Giles, M., Doucet, A., & Holmes, C. (2010). On the utility of graphics cards to perform massively parallel simulation of advanced Monte Carlo methods. Journal of Computational and Graphical Statistics, 19 , 769-789.
    • Li, K., Peng, J.-X., & Bai, E.-W. (2006). A two-stage algorithm for identification of nonlinear dynamic systems. Automatica, 42 (7), 1189-1197.
    • Li, L., & Billings, S. (2001). Continuous time non-linear system identification in the frequency domain. International Journal of Control , 74 (11), 1052-1061.
    • Liepe, J., Taylor, H., Barnes, C., Huvet, M., Bugeon, L., Thorne, T., . . . Stumpf, M. (2012). Calibrating spatio-temporal models of leukocyte dynamics against in vivo live-imaging data using approximate Bayesian computation. Integrative Biology, 4 , 335-345.
    • Ljung, L. (1999). System identification - theory for the user (2nd ed.). Upper Saddle River, NJ: Prentice Hall.
    • Ninness, B., & Henriksen, S. (2010). Bayesian system identification via Markov chain Monte Carlo techniques. Automatica, 46 (1), 40-51.
    • Peterka, V. (1981). Bayesian system identification. Automatica, 17 (1), 41-53.
    • Piroddi, L., & Spinelli, W. (2003). An identification algorithm for polynomial narx models based on simulation error minimization. International Journal of Control , 76 (17), 1767-1781.
    • Rao, G. P., & Unbehauen, H. (2006). Identification of continuous-time systems. IEE Proc. Control, Theory and Applications, 153 (2), 185-220.
    • Sisson, S. A., Fan, Y., & Tanaka, M. M. (2007). Sequential Monte Carlo without likelihoods. Proceedings of the National Academy of Sciences, 104 (6), 1760-1765.
    • Sisson, S. A., Fan, Y., & Tanaka, M. M. (2009). Sequential Monte Carlo without likelihoods. erratum 1041760. Proceedings of the National Academy of Sciences, 106 , 16889-16889.
    • Sjoberg, J., Zhang, Q., Ljung, L., Benveniste, A., Delyon, B., Glorennec, P., . . . Juditsky, A. (1995). Nonlinear black box modeling in system identification: a unified overview. Automatica, 31 (12), 1691- 1724.
    • Tavare, S., Balding, D. J., Griffiths, R. C., & Donnelly, P. (1997). Inferring coalescence times from DNA sequence data. Genetics, 145 , 505-518.
    • Toni, T., Welch, D., Strelkowa, N., Ipsen, A., & Stumpf, M. P. (2009). Approximate Bayesian computation scheme for parameter inference and model selection in dynamical systems. Journal of the Royal Society Interface, 6 (31), 187-202.
    • Tsang, K., & Billings, S. (1994). Identification of continuous time nonlinear systems using delayed state variable filters. International Journal of Control , 60 (2), 159-180.
    • Unbehauen, H., & Rao, G. P. (1990). Continuous-time approaches to system identification - a survey. Automatica, 26 (1), 23-35.
    • Yuz, J., & Goodwin, G. C. (2005). On sampled-data models for nonlinear systems. IEEE Transactions on Automatic Control , 50 (10), 1477-1489.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article