LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Puttick, M.N.; Thomas, G.H.; Benton, M.J. (2014)
Publisher: Wiley
Languages: English
Types: Article
Subjects:

Classified by OpenAIRE into

mesheuropmc: animal structures
The origin of birds (Aves) is one of the great evolutionary transitions. Fossils show that many unique morphological features of modern birds, such as feathers, reduction in body size, and the semilunate carpal, long preceded the origin of clade Aves, but some may be unique to Aves, such as relative elongation of the forelimb. We study the evolution of body size and forelimb length across the phylogeny of coelurosaurian theropods and Mesozoic Aves. Using recently developed phylogenetic comparative methods, we find an increase in rates of body size and body size dependent forelimb evolution leading to small body size relative to forelimb length in Paraves, the wider clade comprising Aves and Deinonychosauria. The high evolutionary rates arose primarily from a reduction in body size, as there were no increased rates of forelimb evolution. In line with a recent study, we find evidence that Aves appear to have a unique relationship between body size and forelimb dimensions. Traits associated with Aves evolved before their origin, at high rates, and support the notion that numerous lineages of paravians were experimenting with different modes of flight through the Late Jurassic and Early Cretaceous.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Allen, V., K. T. Bates, Z. Li, and J. R. Hutchinson. 2013. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs. Nature 497:104-107.
    • Bapst, D. W. 2013. Paleotree: an R package for palaeontological and phylogenetic analyses of evolution. Methods Ecol. Evol. 3:803-807.
    • Barrett, P. M. 2009. The affinities of the enigmatic dinosaur Eshanosaurus deguchiianus from the Early Jurassic of Yunnan Province, People's Republic of China. Palaeontology 52:681-688.
    • Beaulieu J. M., D.-C. Jhwueng, C. Boettiger, and B. C. O'Meara. 2012. Modeling stabilizing selection: expanding the Ornstein-Uhlenbeck model of adaptive evolution. Evolution 66:2369-2383.
    • Benson, R. B. J., and J. N. Choiniere. 2013. Rates of dinosaur limb evolution provide evidence for exceptional radiation in Mesozoic birds. Proc. R Soc. B 280:20131780.
    • Brusatte, S. L., M. J. Benton, M. Ruta, and G. T. Lloyd. 2008. Superiority, competition, and opportunism in the evolutionary radiation of dinosaurs. Science 321:1485-1488.
    • Butler, M. A., and A. A. King. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164:683-695.
    • Campbell, K. E. Jr., and L. Marcus. 1992. The relationship of hindlimb bone dimensions to body weight in birds. Pp. 395-412 in K. E. Campbell Jr., ed. Papers in avian paleontology honoring Pierce Brodkorb. Science Series, Vol. 36. Natural History Museum of Los Angeles County, Los Angeles, CA.
    • Campione, N. E., and D. C. Evans. 2012. A universal scaling relationship between body mass and proximal limb bone dimensions in quadrupedal terrestrial tetrapods. BMC Biol. 10:60.
    • Carrano, M. T. 2006. Body size evolution in the Dinosauria. Pp. 225-268 in M. T. Carrano, T. J. Gaudin, R. W. Blob, and J. R. Wible, eds. Amniote palaeobiology: perspectives on the evolution of mammals, birds and reptiles. Univ. of Chicago Press, Chicago.
    • Carrano M. T., R. B. J. Benson, and S. D. Sampson. 2012. The phylogeny of Tetanurae Dinosauria: Theropoda. J. Syst. Palaeont. 102:211-300.
    • Carrano, M. T., J. Alroy, M. D. Uhen, and A. K. Behrensmeyer. 2013. Taxonomic occurrences of Theropoda recorded in the paleobiology database. Fossilworks. Available at http://fossilworks.org.
    • Chatterjee, S., and R. J. Templin. 2004. Feathered coelurosaurs from China: new light on the arboreal origin of avian flight. In P. J. Currie, E. B. Koppelhus, and M. A. Wright, eds. Feathered dragons: studies on the transition from dinosaurs to birds. Indiana Univ. Press, Bloomington, IN.
    • Clarke, A. J., and K. M. Middleton. 2008. Mosaicism, modules, and the evolution of birds: results from a bayesian approach to the study of morphological evolution using discrete character data. Syst. Biol. 57:185-201.
    • Dececchi, T. A., and H. C. E. Larsson. 2009. Patristic evolutionary rates suggest a punctuated pattern in forelimb evolution before and after the origin of birds. Paleobiology 35:1-12.
    • ---. 2013. Body and limb size disassociation at the origin of the birds: uncoupling allometric constraints across a macroevolutionary transition. Evolution 67:2741-2752.
    • Dial, K. P. 2003. Wing-assisted incline running and the evolution of flight. Science 299:402-404.
    • Dyke, G., R. de Kat, C. Palmer, J. van der Kindere, D. Naish, and B. Ganapathisubramani. 2013. Aerodynamic performance of the feathered dinosaur Microraptor and the evolution of feathered flight. Nat. Commun. 4:2489.
    • Eastman, J. M., M. E. Alfaro, P. Joyce, A. L. Hipp, and L. J. Harmon. 2011. A novel comparative method for identifying shifts in the rate of character evolution on trees. Evolution 65:3578-3589.
    • Felsenstein, J. 1985. Phylogenies and the comparative method. Am. Nat. 125:1-15.
    • Freckleton, R. P., P. H. Harvey, and M. Pagel. 2002. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160: 712-726.
    • Gatesy, S. M. 1990. Caudofemoral musculature and the evolution of theropod locomotion. Paleobiology 16:170-186.
    • Gatesy, S. M., and K. P. Dial. 1996. Locomotor modules and the evolution of avian flight. Evolution 50:331-340.
    • Gingerich, P. D. 2001. Rates of evolution on the time scale of the evolutionary process. Genetica 112:127-144.
    • ---. 2009. Rates of evolution. Annu. Rev. Ecol. Evol. Syst. 40:657- 675.
    • Godefroit, P., A. Cau, D.-Y. Hu, F. Escuillie´, W. H. Wu, and G. J. Dyke. 2013. A Jurassic avialan dinosaur from China resolves the phylogenetic history of birds. Nature 498:359-362.
    • Gong, E.-P., L. D. Martin, D. A. Burnham, A. R. Falk, and L.-H. Hou. 2012. A new species of Microraptor from the Jehol Biota of northeastern China. Palaeoworld 21:81-91
    • Hansen, T. F. 1997. Stabilizing selection and the comparative analysis of adaptation. Evolution 51:1341-1351.
    • Harmon, L. J., J. B. Losos, J. T. Davies, R. G. Gillespie, J. L. Gittleman, W. B. Jennings, K. H. Kozak, M. A. McPeek, F. Moreno-Roark, T. J. Near, et al. 2010. Early bursts of body size and shape evolution are rare in comparative data. Evolution 64:2385-2396.
    • Hu, D., L. Hou, L. Zhang, and X. Xu. 2009. A pre-Archaeopteryx troodontid theropod from China with long feathers on the metatarsus. Nature 461:640-643.
    • Hunt, G. 2007. The relative importance of directional change, random walks, and stasis in the evolution of fossil lineages. Proc. Natl. Acad. Sci. USA 104:18404-18408.
    • ---. 2012. Measuring rates of phenotypic evolution and the inseparability of tempo and mode. Paleobiology 38:351-373.
    • Hutchinson, J. R., and V. Allen. 2009. The evolutionary continuum of limb function from early theropods to birds. Naturwissenschaften 96:423- 448.
    • Landis, M. J., J. G. Schraiber, and M. Liang. 2013. Phylogenetic analysis using Le´vy processes: finding jumps in the evolution of continuous traits. Syst. Biol. 62:193-204.
    • Lee M. S. Y., and T. H. Worthy. 2012. Likelihood reinstates Archaeopteryx as a primitive bird. Biol. Lett. 8:299-303.
    • Lloyd, G. T., S. C. Wang, and S. L. Brusatte. 2012. Identifying heterogeneity in rates of morphological evolution: discrete character change in the evolution of lungfish (Sarcopterygii; Dipnoi). Evolution 66: 330-348.
    • Middleton, K. M., and S. M. Gatesy. 2000. Theropod forelimb design and evolution. Zool. J. Linn. Soc. 128:149-187.
    • Nesbitt, S. J., A. H. Turner, M. Spaulding, J. L. Conrad, and M. A. Norell. 2009. The theropod furcula. J. Morphol. 270:856-879.
    • Novas, F. E., M. D. Ezcurra, F. L. Agnolin, D. Pol, and R. Ort´ız. 2012. New Patagonian Cretaceous theropod sheds light about the early radiation of Coelurosauria. Rev. Mus. Argent. Cienc. Nat. 14:57-81.
    • Nudds, R. L., and G. J. Dyke. 2010. Narrow primary feather rachises in Confuciusornis and Archaeopteryx suggest poor flight ability. Science 328:887-889.
    • O'Connor, J. K., and Z. Zhou. 2013. A redescription of Chaoyangia beishanensis (Aves) and a comprehensive phylogeny of Mesozoic birds. J. Syst. Palaeont. 11:889-906.
    • O'Meara, B. C., C. Ane´, M. J. Sanderson, and P. C. Wainwright. 2006. Testing for different rates of continuous trait evolution using likelihood. Evolution 60:922-933.
    • Orme, C. D. L., R. P. Freckleton, G. H. Thomas, T. Petzoldt, and S. A. Fritz. 2011. Caper: comparative analyses of phylogenetics and evolution in R. Available at http://R-Forge.R-project.org/projects/caper/.
    • Padian, K., and L. M. Chiappe. 1998. The origin and early evolution of birds. Biol. Rev. 73:1-42.
    • Pagel, M. 1997. Inferring evolutionary processes from phylogenies. Zool. Scripta 26:331-348.
    • ---. 1999. Inferring the historical patterns of biological evolution. Nature 401:877-884.
    • Pagel, M., and A. Meade. 2013. BayesTraits, version 2. Univ. of Reading, Berkshire, U.K. Available at http://www.evolution.rdg.ac.uk.
    • Revell, L. J. 2009. Size-correction and principal components for interspecific comparative studies. Evolution 63:3258-3268.
    • Revell, L. J., and D. C. Collar. 2009. Phylogenetic analysis of the evolutionary correlation using likelihood. Evolution 63:1090-1100.
    • Revell, L. J., D. L. Mahler, P. R. Peres-Neto, and B. D. Redelings. 2012. A new method for identifying exceptional phenotypic diversification. Evolution 66:135-146.
    • Slater, G. J. 2013. Phylogenetic evidence for a shift in the mode of mammalian body size evolution at the Cretaceous-Palaeogene boundary. Methods Ecol. Evol. 4:734-744.
    • Sookias, R. B., R. J. Butler, and R. B. J. Benson. 2012. Rise of dinosaurs reveals major body-size transitions are driven by passive processes of trait evolution. Proc. R Soc. B 279:2180-2187.
    • Sullivan C., D. W. E. Hone, X. Xu, and F. Zhang. 2010. The asymmetry of the carpal joint and the evolution of wing folding in maniraptoran theropod dinosaurs. Proc. R Soc. B 277:2027-2033.
    • Thomas, G. H., and R. P. Freckleton. 2012. MOTMOT: models of trait macroevolution on trees. Methods Ecol. Evol. 3:145-151.
    • Thomas, G. H., S. Meiri, and A. B. Phillimore. 2009. Body size diversification in Anolis: novel environment and island effects. Evolution 63:2017- 2030.
    • Turner, A. H., D. Pol, J. A. Clarke, G. M. Erickson, and M. A. Norell. 2007. A basal dromaeosaurid and size evolution preceding avian flight. Science 317:1378-1381.
    • Turner, A. H., P. J. Makovicky, and M. A. Norell. 2012. A review of dromaeosaurid systematics and paravian phylogeny. Bull. Am. Mus. Nat. Hist. 371:1-206.
    • Venditti, C., A. Meade, and M. Pagel. 2011. Multiple routes to mammalian diversity. Nature 479:393-396.
    • Xing, L., W. S. Persons, IV, P. R. Bell, X. Xu, J. Zhang, T. Miyashita, F. Wang, and P. J. Currie. 2013. Piscivory in the feathered dinosaur Microraptor. Evolution 67:2441-2445.
    • Xu, X., Z. Zhou, X. Wang, X. Kuang, F. Zhang, and X. Du. 2003. Four-winged dinosaurs from China. Nature 421:335-340.
    • Xu, X., H. You, K. Du, and F. Han. 2011. An Archaeopteryx-like theropod from China and the origin of Avialae. Nature 475: 465-470.
    • Zanno, L. E. 2010. A taxonomic and phylogenetic re-evaluation of Therizinosauria (Dinosauria: Maniraptora). J. Syst. Palaeontol. 8:503- 543.
    • Zanno, L. E., and P. J. Makovicky. 2013. No evidence for directional evolution of body mass in herbivorous theropod dinosaurs. Proc. R Soc. B. 280:20122526.
    • Zhang, F.-C., Z.-H. Zhou, X. Xu, and X.-L. Wang. 2002. A juvenile coelurosaurian theropod from China indicates arboreal habits. Naturwissenschaften 89:394-398.
    • Zheng, X., Z. Zhou, X. Wang, F. Zhang, X. Zhang, Y. Wang, G. Wei, S. Wang, and X. Xu. 2013. Hind wings in basal birds and the evolution of leg feathers. Science 339:1309-1312.
    • Zhou, Z., and F. Z. Z. Li. 2010. A new Lower Cretaceous bird from China and tooth reduction in early avian evolution. Proc. R Soc. B 277:219- 227.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

Cite this article