LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Song, Yan; McLoughlin, Ian Vince; Dai, Lirong (2015)
Publisher: ACM
Languages: English
Types: Unknown
Subjects: T

Classified by OpenAIRE into

ACM Ref: ComputingMethodologies_IMAGEPROCESSINGANDCOMPUTERVISION, ComputingMethodologies_PATTERNRECOGNITION
Effective image representation plays an important role for image classification and retrieval. Bag-of-Features (BoF) is well known as an effective and robust visual representation. However, on large datasets, convolutional neural networks (CNN) tend to perform much better, aided by the availability of large amounts of training data. In this paper, we propose a bag of Deep Bottleneck Features (DBF) for image classification, effectively combining the strengths of a CNN within a BoF framework. The DBF features, obtained from a previously well-trained CNN, form a compact and low-dimensional representation of the original inputs, effective for even small datasets. We will demonstrate that the resulting BoDBF method has a very powerful and discriminative capability that is generalisable to other image classification tasks.

Share - Bookmark

Cite this article