LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Piao, Y.; Wu, T.; Chen, B. (2016)
Publisher: American Chemical Society
Languages: English
Types: Article
Subjects:
Graphene oxide (GO)-polyamidoamine (PAMAM) dendrimer nanocomposite hydrogels were prepared through a one-step synthesis by mixing a GO suspension and a PAMAM solution at varying ratios of GO to PAMAM. The materials self-assembled into physically cross-linked networks, mainly driven by electrostatic interactions between the oppositely charged GO nanosheets and PAMAM dendrimer. The chemical structure of PAMAM dendrimer was studied by mass spectrometry, nuclear magnetic resonance spectroscopy, and potentiometric titration. The structure and properties of GO-PAMAM nanocomposite hydrogels were investigated by Fourier transform infrared spectroscopy, Raman spectroscopy, X-ray diffraction, scanning electron microscopy, and rheometry. The nanocomposite hydrogels exhibited a relatively high mechanical performance with a storage modulus of up to 284 kPa, as well as self-healing property, owing to their reversible and multiple physical cross-links. These hydrogels may be further developed for biomedical applications.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article