Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Isah Yakub Mohammed; Yousif Abdalla Abakr; Feroz Kabir Kazi; Suzana Yusuf; Ibraheem Alshareef; Soh Aik Chin (2015)
Publisher: North Carolina State University
Journal: BioResources
Languages: English
Types: Article
Subjects: Biotechnology, Pyrolysis, Napier grass, Non-condensable, Bio-oil, Characterization, Bio-char, TP248.13-248.65
This study presents a report on pyrolysis of Napier grass stem in a fixed bed reactor. The effects of nitrogen flow (20 to 60 mL/min), and reaction temperature (450 to 650 degrees C) were investigated. Increasing the nitrogen flow from 20 to 30 mL/min increased the bio-oil yield and decreased both bio-char and non-condensable gas. 30 mL/min nitrogen flow resulted in optimum bio-oil yield and was used in the subsequent experiments. Reaction temperatures between 450 and 600 degrees C increased the bio-oil yield, with maximum yield of 32.26 wt% at 600 degrees C and a decrease in the corresponding bio-char and non-condensable gas. At 650 degrees C, reductions in the bio-oil and bio-char yields were recorded while the non-condensable gas increased. Water content of the bio-oil decreased with increasing reaction temperature, while density and viscosity increased. The observed pH and higher heating values were between 2.43 to 2.97, and 25.25 to 28.88 MJ/kg, respectively. GC-MS analysis revealed that the oil was made up of highly oxygenated compounds and requires upgrading. The bio-char and non-condensable gas were characterized, and the effect of reaction temperature on the properties was evaluated. Napier grass represents a good source of renewable energy when all pyrolysis products are efficiently utilized.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Abdel-Fattah, T. M., Mahmoud, M. E., Ahmed, S. B., Huff, M. D., Lee, J. W., Kumar, S. (2015). “Biochar from woody biomass for removing metal contaminants and carbon sequestration” Journal of Industrial and Engineering Chemistry 22(25), 103-109. DOI:10.1016/j.jiec.2014.06.030
    • Abu Bakar, M. S., and Titiloye, J. O. (2013). “Catalytic pyrolysis of rice husk for bio-oil production,” Journal of Analytical and Applied Pyrolysis 103, 362-368. DOI: 10.1016/j.jaap.2012.09.005
    • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., and Ok, Y. S. (2012). “Effects of pyrolysis temperature on soybean stover- and peanut shell-derived biochar properties and TCE adsorption in water,” Bioresource Technology 118, 536- 544. DOI: 10.1016/j.biortech.2012.05.042
    • Al-Wabel, M. I., Al-Omran, A., El-Naggar, A. H., Nadeem, M., and Usman, A. R. A. (2013). “Pyrolysis temperature induced changes in characteristics and chemical composition of biochar produced from conocarpus wastes,” Bioresource Technology 131, 374-379. DOI: 10.1016/j.biortech.2012.12.165
    • Amutio, M., Lopez, G., Artetxe, M., Elordi, G., Olazar, M., and Bilbao, J. (2012). “Influence of temperature on biomass pyrolysis in a conical spouted bed reactor,” Resources, Conservation and Recycling 59, 23-31. DOI: 10.1016/j.resconrec.2011.04.002
    • Anex, R. P., Aden, A., Kazi, F. K., Fortman, J., Swanson, R. M., Wright, M. M., Satrio, J. A., Brown, R. C., Daugaard, D. E., Platon, A., Kothandaraman, G., Hsu, D. D., and Dutta, A. (2010). “Techno-economic comparison of biomass-to-transportation fuels via pyrolysis, gasification, and biochemical pathways” Fuel 89, S29-S35. DOI:10.1016/j.fuel.2010.07.015
    • ASTM D240 (2009). “Standard test method for heat of combustion of liquid hydrocarbon fuels by bomb calorimeter,” ASTM International, West Conshohocken, PA. DOI:10.1520/D0240-09
    • ASTM E203 (2001). “Standard test method for water using volumetric Karl Fischer titration,” ASTM International, West Conshohocken, PA. DOI:10.1520/E0203-01
    • Azargohar, R., Nanda, S., Kozinski, J.A., Dalai, A. K., and Sutarto, R. (2014). “Effects of temperature on the physicochemical characteristics of fast pyrolysis bio-chars derived from Canadian waste biomass,” Fuel 125, 90-100. DOI:10.1016/J.FUEL.2014.01.083
    • Bridgwater, A.V. (2012). “Review of fast pyrolysis of biomass and product upgrading,” Biomass and bioenergy 38, 68-94. DOI:10.1016/J.Biombioe.2011.01.048
    • BS EN 14774-1 (2009). “Solid biofuels. Determination of moisture content. Oven dry method. Total moisture,” British Standards Institution, London, UK. DOI:10.3403/30198050
    • BS EN 14775 (2009). “Solid biofuels. Determination of ash content,” British Standards Institution, London, UK. DOI:10.3403/30198062
    • BS EN 14918 (2009). “Solid biofuels. Determination of calorific value,” British Standards Institution, London, UK. DOI:10.3403/30198715
    • BS EN 15148 (2009). “Solid biofuels. Determination of the content of volatile matter,” British Standards Institution, London, UK. .DOI:10.3403/30198059
    • Cao, X., and Harris, W. (2010). “Properties of dairy-manure-derived biochar pertinent to its potential use in remediation” Bioresour. Technol. 101(14), 5222-5228. .DOI:10.1016/j.biortech.2010.02.052
    • Chia, C. H., Gong, B., Joseph, S. D., Marjo, C. E. Munroe, P., and Rich, A. M. (2012). “Imaging of mineral-enriched biochar by FTIR, Raman and SEM-EDX,” Vibrational Spectroscopy 62, 248-257. DOI:10.1016/j.vibspec.2012.06.006
    • Chun, Y., Sheng, G., Chiou, C.T., and Xing, B. (2004). “Compositions and sorptive properties of crop residue-derived chars” Environ. Sci. Technol. 38(17), 4649-4655. DOI:10.1021/es035034w
    • Damartzis, T., and Zabaniotou, A. (2011). “Thermochemical conversion of biomass to second generation biofuels through integrated process design-A review,” Renewable and Sustainable Energy Reviews 15(1), 366-378. DOI:10.1016/j.rser.2010.08.003
    • Demirbas, A. (2004). “Effects of temperature and particle size on bio-char yield from pyrolysis of agricultural residues,” J. Anal. Appl. Pyrolysis 72(2), 243-248. DOI:10.1016/j.jaap.2004.07.003
    • Deshmukh, Y., Yadav, V., Nigam, N., Yadav, A., and Khare, P. (2015). “Quality of biooil by pyrolysis of distilled spent of Cymbopogon flexuosus,” Journal of Analytical and Applied Pyrolysis, in press, DOI:10.1016/J.JAAP.2015.07.003
    • Fan, Y., Cai, Y., Li, X., Yin, H., Yu, N., Zhang, R., and Zhao, W. (2014). “Rape straw as a source of bio-oil via vacuum pyrolysis: Optimization of bio-oil yield using orthogonal design method and characterization of bio-oil,” Journal of Analytical and Applied Pyrolysis 106, 63-70. DOI:10.1016/j.jaap.2013.12.011
    • Fernández, Y., and Menéndez, J.A. (2011). “Influence of feed characteristics on the microwave-assisted pyrolysis used to produce syngas from biomass wastes,” J. Anal. Appl. Pyrolysis 91(2), 316-322. DOI:10.1016/j.jaap.2011.03.010
    • Fernandez-Akarregi, A.R., Makibar, J., Lopez, G., Amutio, M., and Olazar, M. (2013). “Design and operation of a conical spouted bed reactor pilot plant (25 kg/h) for biomass fast pyrolysis,” Fuel Processing Technology 112, 48-56. DOI:10.1016/j.fuproc.2013.02.022
    • Floudas, C. A., Elia, J. A., and Baliban, R. C. (2012). “Hybrid and single feedstock energy processes for liquid transportation fuels: A critical review,” Computers and Chemical Engineering 41, 24-51. DOI:10.1016/j.compchemeng.2012.02.008
    • Gebreslassie, B. H., Slivinsky, M., Wang, B., and You, F. (2013). “Life cycle optimization for sustainable design and operations of hydrocarbon biorefinery via fast pyrolysis, hydrotreating and hydrocracking,” Computers and Chemical Engineering 50, 71-91. DOI:10.1016/j.compchemeng.2012.10.013
    • Imam, T., and Capareda, S. (2012). “Characterization of bio-oil, syn-gas and bio-char from switchgrass pyrolysis at various temperatures,” Journal of Analytical and Applied Pyrolysis 93, 170-177. DOI:10.1016/j.jaap.2011.11.010
    • Jahirul, M. I., Rasul, M. G., Chowdhury, A. A., and Ashwath, N. (2012). “Biofuels production through biomass pyrolysis-A technological review,” Energies 5(12), 4952-5001. DOI:10.3390/en5124952
    • Jung, S.-H., Kang, B.-S., and Kim, J.-S. (2008). “Production of bio-oil from rice straw and bamboo sawdust under various reaction conditions in a fast pyrolysis plant equipped with a fluidized bed and a char separation system,” Journal of Analytical and Applied Pyrolysis 82(2), 240-247. DOI:10.1016/j.jaap.2008.04.001
    • Keles, S., Kaygusuz, K., and Akgün, M. (2011). “Pyrolysis of woody biomass for sustainable bio-oil,” Energy Sources Part A 33, 879-889. DOI:10.1080/15567030903330652
    • Ketzial, J., Radhika, D., and Nesaraj, A S. (2013). “Low-temperature preparation and physical characterization of doped BaCeO3 nanoparticles by chemical precipitation,” International Journal of Industrial Chemistry 4(1), 18. DOI:10.1186/2228-5547-4-18
    • Kim, P., Johnson, A., Edmunds, C. W., Radosevich, M., Vogt, F., Rials, T. G., and Labbe, N. (2011). “Surface functionality and carbon structures in lignocellulosicderived bio-chars produced by fast pyrolysis,” Energy and Fuel 25(10), 4693-4703. DOI:10.1021/ef200915s
    • Le Roux, É., Chaouch, M., Diouf, P. N., and Stevanovic, T. (2015). “Impact of a pressurized hot water treatment on the quality of bio-oil produced from aspen,” Biomass and Bioenergy 81, 202-209 DOI:10.1016/J.biombioe.2015.07.005
    • Lee, M.-K., Tsai, W.-T., Tsaic, Y.-L., and Lin, S.-H. (2010). “Pyrolysis of Napier grass in an induction-heating reactor,” Journal of Analytical and Applied Pyrolysis 88(2), 110-116. DOI:10.1016/j.jaap.2010.03.003
    • Leibbrandt, N. H., Knoetze, J. H., and Gorgens, J. F. (2011). “Comparing biological and thermochemical processing of sugarcane bagasse: An energy balance perspective,” Biomass and Bioenergy 35(5), 2117-2126. DOI:10.1016/j.biombioe.2011.02.017
    • Liew, W. H., Hassim, M. H., and Ng, D. K. S. (2014). “Review of evolution, technology and sustainability assessments of biofuel production,” Journal of Cleaner Production DOI: 10.1016/j.jclepro.2014.01.006
    • Lupoi, J. S., Singh, S., Simmons, B. A., and Henry, R. J. (2014). “Assessment of lignocellulosic biomass using analytical spectroscopy: an evolution to highthroughput techniques,” BioEnergy Research 7(1), 1-23. DOI:10.1007/s12155-013- 9352-1
    • Margeot, A., Hahn-Hagerdal, B., Edlund, M., Slade, R., and Monot, F. (2009). “New improvements for lignocellulosic ethanol,” Curr. Opin. Biotechnol. 20(3), 372-380. DOI:10.1016/j.copbio.2009.05.009
    • Medvedev, D., Murashkina, A., Pikalova, E., Demin, A., Podias, A., and Tsiakaras, P. (2014). “BaCeO3: Materials development, properties and application,” Progress in Materials Science 60, 72-129. DOI: 10.1016/j.pmatsci.2013.08.001
    • Mimmo, T., Panzacchi, P., Baratieri, M., Davies, C. A., and Tonon, G. (2014). “Effect of pyrolysis temperature on Miscanthus (Miscanthus x giganteus) biochar physical, chemical and functional properties,” Biomass and Bioenergy 62, 149-157. DOI:10.1016/j.biombioe.2014.01.004
    • Ming, Z., Ximei, L., Yulong, L., and Lilin, P. (2014). “Review of renewable energy investment and financing in China: Status, mode, issues and countermeasures,” Renewable and Sustainable Energy Reviews 31, 23-37. DOI:10.1016/j.rser.2013.11.026
    • Mohammed, I. Y., Kazi, F. K., Abakr, Y. A., Yusuf, S., and Razzaque, M. A. (2015a). “Novel method for the determination of water content and higher heating value of pyrolysis oil,” BioResources 10(2), 2681-2690. DOI:10.15376/biores.10.2.2681- 2690
    • Mohammed, I. Y., Abakr, Y. A., Kazi, F. K., Yusup, S., Alshareef, I., and Chin, S. A. (2015b). “Comprehensive characterization of napier grass as a feedstock for thermochemical conversion,” Energies 8(5), 3403-3417. DOI:10.3390/en8053403
    • Mohammed, I. Y., Abakr, Y. A., Kabir, F., & Yusuf, S. (2015c). “Effect of aqueous pretreatment on pyrolysis characteristics of napier grass. Journal of Engineering Science & Technology,” 10(11), in press
    • Mohammed, I. Y., Samah, M., Mohamed, A., & Sabina, G. (2014). “Comparison of SelexolTM and Rectisol® Technologies in an Integrated Gasification Combined Cycle (IGCC) Plant for Clean Energy Production,” International Journal of Engineering Research 3(12), 742-744. http://works.bepress.com/irpindia/198 Mukome, F. N. D., Zhang, X., Silva, L. C. R., Six, J., and Parikh, S. J. (2013). “Use of chemical and physical characteristics to investigate trends in biochar feedstocks,” Journal of Agricultural and Food Chemistry 61(9), 2196-2204. DOI:10.1021/jf3049142
    • Muradov, N., Fidalgo, B., Gujar, A. C., Garceau, N., and T-Raissi, A. (2012). “Production and characterization of Lemna minor bio-char and its catalytic application for biogas reforming,” Biomass Bioenergy 42, 123-131. DOI:10.1016/j.biombioe.2012.03.003
    • Nigam, P. S., and Singh, A. (2011). “Production of liquid biofuels from renewable resources,” Prog. Energy Combust Sci .37(1), 52-68. DOI:10.1016/j.pecs.2010.01.003
    • Oasmaa, A., Leppamaki, E., Koponen, P., Levander, J., and Tapola, E. (1997). “Physical characterization of biomass-based pyrolysis liquids, application of standard fuel oil analyses,” Fuels and Energy Abstracts 39(2), 97. DOI:10.1016/s0140- 6701(98)97220-4
    • Oil Market Report (OMR). (2015). International Energy Agency, https://www.iea.org/oilmarketreport/omrpublic/
    • Oja, V., Hajaligol, M. R., and Waymack, B. E. (2006). “The vaporization of semi-volatile compounds during tobacco pyrolysis,” J. Anal. Appl. Pyrol. 76(1-2), 117-123. .DOI:10.1016/j.jaap.2005.08.005
    • Organization of Petroleum Exporting Countries (OPEC). (2013). “Annual Statistical Bulletin,” (http://www.opec.org/opec_web/en/data_graphs/330.htm).
    • Park, S. R., Pandey, A. K., Tyagi, V. V., and Tyagi, S. K. (2014). “Energy and exergy analysis of typical renewable energy systems,” Renewable and Sustainable Energy Reviews 30, 105-123. DOI:10.1016/j.rser.2013.09.011
    • Phan, B. M. Q., Duong, L. T., Nguyen, V. D., Tran, T. B., Nguyen, M. H. H., Nguyen, L. H., Nguyen, D. A., and Luu, L. C. (2014). “Evaluation of the production potential of bio-oil from Vietnamese biomass resources by fast pyrolysis” Biomass and Bioenergy 62, 74-81. DOI.org/10.1016/j.biombioe.2014.01.012
    • Pilon, G., and Lavoie, J-M. (2011). “Characterization of switchgrass char produced in torrefaction and pyrolysis conditions,” BioResources 6(4), 4824-4839
    • Pütün, E. (2010). “Catalytic pyrolysis of biomass: Effects of pyrolysis temperature, sweeping gas flow rate and MgO catalyst,” Energy 35(7), 2761-2766. DOI:10.1016/j.energy.2010.02.024
    • Raveendran, R., Ganesh, A., and Khilar, K. C. (1996). “Pyrolysis characteristics of biomass and biomass components.” Fuel 75(8), 987-998. DOI:10.1016/0016- 2361(96)00030-0
    • Saidura, R., Abdelaziza, E. A., Demirbasb, A., Hossaina, M. S., and Mekhilef, S. (2011). “A review on biomass as a fuel for boilers,” Renewable and Sustainable Energy Reviews 15(5), 2262-2289. DOI:10.1016/j.rser.2011.02.015
    • Samson, R., Mani, S., Boddey, R., Sokhansanj, S., Quesada, D., Urquiaga, S., Reis, V. and Ho Lem, C. (2005). “The potential of C4 perennial grasses for developing a global BIOHEAT industry,” Critical Reviews in Plant Sciences 24(5-6), 461-495. DOI:10.1080/07352680500316508
    • Shihadeh, A., and Hochgreb, S. (2002). “Impact of biomass pyrolysis oil process conditions on ignition delay in compression ignition engines,” Energy & Fuels 16(3), 552-561. DOI:1/ef010094d
    • Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., and Crocker, D. (2012). “Determination of structural carbohydrates and lignin in biomass laboratory analytical procedure,” National Renewable Laboratory, NREL/TP-510-42618.
    • Soetardji, J. P., Widjaja, C., Djojorahardjo, Y., Soetaredjo, F. E., Ismadjia, S. (2014). “Bio-oil from jackfruit peel waste,” Procedia Chemistry 9, 158 - 164. DOI:10.1016/j.proche.2014.05.019
    • Song, W., and Guo, M. (2012). “Quality variations of poultry litter biochar generated at different pyrolysis temperatures,” J. Anal. Appl. Pyrolysis 94, 138-145. DOI:10.1016/j.jaap.2011.11.018
    • Srirangan, K., Akawi, L., Moo-Young, M., and Chou, C.P. (2012). “Towards sustainable production of clean energy carriers from biomass resources,” Applied Energy 100, 172-186. DOI:10.1016/j.apenergy.2012.05.012
    • Stephanidis, S., Nitsos, C., Kalogiannis, K., Iliopoulou, E. F., Lappas, A. A., and Triantafyllidis, K. S. (2011). “Catalytic upgrading of lignocellulosic biomass pyrolysis vapours: Effect of hydrothermal pre-treatment of biomass,” Catalysis Today 167, 37-45 DOI:10.1016/j.cattod.2010.12.049
    • Strezov, V., Evans, T. J., and Hayman, C. (2008). “Thermal conversion of elephant grass (Pennisetum purpureum Schum.) to bio-gas, bio-oil and charcoal,” Bioresource Technology 99(17), 8394-8399. DOI:10.1016/j.biortech.2008.02.039
    • Sun, Y., Gao, B., Yao, Y., Fang, J., Zhang, M., Zhou, Y., Chen, H., and Yang, L. (2014). “Effects of feedstock type, production method, and pyrolysis temperature on biochar and hydrochar properties,” Chemical Engineering Journal 240, 574-578. DOI:10.1016/j.cej.2013.10.081
    • Uzun, B. B., Pütün, A. E., and Pütün, E. (2007). “Rapid pyrolysis of olive residue. 1. Effect of heat and mass transfer limitations on product yields and bio-oil compositions,” Energy & Fuel 21(3), 1768-1776. DOI:10.1021/ef060171a
    • Venderbosch, R. H., and Prins, W. (2010). “Fast pyrolysis technology development - Review,” Biofuels, Bioprod. Biorefin. 4(2), 178-208. DOI:10.1002/bbb.205
    • Wang, D., Zhang, W., Hao, X., and Zhou, D. (2013). “Transport of biochar particles in saturated granular media: Effects of pyrolysis temperature and particle size,” Environ. Sci. Technol. 47(2), 821-828. DOI:10.1021/es303794d
    • Wang, H., Srinivasan, R., Yu, F., Steele, P., Li, Q., and Mitchell, B. (2011). “Effect of acid, alkali, and steam explosion pretreatments on characteristics of bio-oil produced from pinewood,” Energy Fuels 25, 3758-3764. DOI: 10.1021/ef2004909
    • Xiu, S., and Shahbazi, A. (2012). “Bio-oil production and upgrading research: A review,” Renewable and Sustainable Energy Reviews 16(7), 4406-4414. DOI:10.1016/j.rser.2012.04.028
    • Yamamoto, T., Tayakout-Fayolle, M., Geantet, C. (2015). “Gas-phase removal of hydrogen sulfide using iron oxyhydroxide at low temperature: Measurement of breakthrough curve and modeling of sulfidation mechanism”, Chemical Engineering Journal 262, 702-709. DOI.org/10.1016/j.cej.2014.09.093
    • Yang, H., Yan, R., Chen, H., Lee, D. H., and Zheng, C. (2007). “Characteristics of hemicellulose, cellulose and lignin pyrolysis,” Fuel Volume 86(12-13), 1781-1788. DOI:10.1016/j.fuel.2006.12.013
    • Yuan, J.-H., Xu, R.-K., and Zhang, H. (2011). “The forms of alkalis in the biochar produced from crop residues at different temperatures,” Bioresource Technology 102(3), 3488-3497. DOI:10.1016/j.biortech.2010.11.018
    • Zhang, Q., Chang, J., Wang T., and Xu, Y. (2007). “Review of biomass pyrolysis oil properties and upgrading research,” Energy Conversion and Management 48(1), 87- 92. DOI:10.1016/j.enconman.2006.05.010
    • Article submitted: April 27, 2015; Peer review completed: July 24, 2015; Revised version
    • received: July 30, 2015; Accepted: July 31, 2015; Published: August 12, 2015.
    • DOI: 10.15376/biores.10.4.6457-6478
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

    Title Year Similarity

    Effects of pressure on morphology and structure of bio-char from pressurized entrained-flow pyrolysis of microalgae


    水蒸気ガス化によるバイオチャーからの高水素含有ガスの生産 : バイオチャーの特性および反応温度、水蒸気供給速度のガス組成と水素収量の与える影響


    Production and Characterization of Bio-Char from the Pyrolysis of Empty Fruit Bunches


    Effects of Temperature and Heating Rate on the Characteristics of Molded Bio-char


    Characterization of bio-oils and bio-char obtained from the pyrolysis of a mixture of Lolium perenne, Festuca ovina, Festuca rubra and Poa pratensis grasses


    Valorization of algal waste via pyrolysis in a fixed-bed reactor: production and characterization of bio-oil and bio-char




    Shape-controlled Synthesis of Activated Bio-chars by Surfactant-templated Ionothermal Carbonization in Acidic Ionic Liquid and Activation with Carbon Dioxide


    Effect of Temperature on the Evolution of Physical Structure and Chemical Properties of Bio-char Derived from Co-pyrolysis of Lignin with High-Density Polyethylene


    Effects of Bio-char on Sugar Beet Growth in Clomazone Residual Soil


    CO₂ gasification of bio-char derived from conventional and microwave pyrolysis


    Valorization of Napier grass via intermediate pyrolysis: Optimization using response surface methodology and pyrolysis products characterization


    Hydrogen-Rich Gas Production from Steam Gasification of Bio-char in the Presence of CaO


    Preparation of porous bio-char and activated carbon from rice husk by leaching ash and chemical activation


    Study of Effect of Temperature on Yield of Bio-Oil, Bio-Char and NCG from Soybean Stalk in Continuous Feed Bio-oil Reactor


    Sorption Characteristics of Hexavalent Chromium [Cr(VI)] onto Bone Char and Bio-char.


Share - Bookmark

Cite this article