LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Gattolin, Stefano; Sorieul, Mathias; Hunter, P. R. (Paul R.); Khonsari, Roman H.; Frigerio, Lorenzo (2009)
Publisher: BioMed Central Ltd.
Journal: BMC Plant Biology
Languages: English
Types: Article
Subjects: Research article, Botany, QK1-989, QK

Abstract

Background

Tonoplast intrinsic proteins (TIPs) are widely used as markers for vacuolar compartments in higher plants. Ten TIP isoforms are encoded by the Arabidopsis genome. For several isoforms, the tissue and cell specific pattern of expression are not known.

Results

We generated fluorescent protein fusions to the genomic sequences of all members of the Arabidopsis TIP family whose expression is predicted to occur in root tissues (TIP1;1 and 1;2; TIP2;1, 2;2 and 2;3; TIP4;1) and expressed these fusions, both individually and in selected pairwise combinations, in transgenic Arabidopsis. Analysis by confocal microscopy revealed that TIP distribution varied between different cell layers within the root axis, with extensive co-expression of some TIPs and more restricted expression patterns for other isoforms. TIP isoforms whose expression overlapped appeared to localise to the tonoplast of the central vacuole, vacuolar bulbs and smaller, uncharacterised structures.

Conclusion

We have produced a comprehensive atlas of TIP expression in Arabidopsis roots, which reveals novel expression patterns for not previously studied TIPs.

Share - Bookmark

Cite this article