LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Verstraete, Lander; Greenwood, John; Hirsch, Brandon E.; De Feyter, Steven (2016)
Publisher: American Chemical Society
Journal: ACS Nano
Languages: English
Types: Article
Subjects: self-assembly, confinement, scanning tunneling microscopy, Article, nucleation and growth
Nanocorrals with different size, shape, and orientation are created on covalently modified highly oriented pyrolytic graphite surfaces using scanning probe nanolithography, i.e., nanoshaving. Alkylated diacetylene molecules undergo laterally confined supramolecular self-assembly within these corrals. When nanoshaving is performed in situ, at the liquid–solid interface, the orientation of the supramolecular lamellae structure is directionally influenced by the gradual graphite surface exposure. Careful choice of the nanoshaving direction with respect to the substrate symmetry axes promotes alignment of the supramolecular lamellae within the corral. Self-assembly occurring inside corrals of different size and shape reveals the importance of geometric and kinetic constraints controlled by the nanoshaving process. Finally, seed-mediated crystallization studies demonstrate confinement control over nucleation and growth principles.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • (1) Mali, K. S.; Adisoejoso, J.; Ghijsens, E.; De Cat, I.; De Feyter, S.
    • Exploring the Complexity of Supramolecular Interactions for Patterning at the Liquid−Solid Interface. Acc. Chem. Res. 2012, 45, 1309−1320.
    • (2) Lackinger, M.; Griessl, S.; Heckl, W. M.; Hietschold, M.; Flynn, G. W. Self-Assembly of Trimesic Acid at the Liquid−Solid Interface - a Study of Solvent-Induced Polymorphism. Langmuir 2005, 21, 4984− 4988.
    • (3) Blunt, M. O.; Russell, J. C.; Gimeńez-Loṕez, M. d. C.; Garrahan, J. P.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Random Tiling and Topological Defects in a Two-Dimensional Molecular Network. Science 2008, 322, 1077−1081.
    • (4) Xue, Y.; Zimmt, M. B. Patterned Monolayer Self-Assembly Programmed by Side Chain Shape: Four-Component Gratings. J. Am.
    • Chem. Soc. 2012, 134, 4513−4516.
    • (5) Cahen, D.; Kahn, A.; Umbach, E. Energetics of Molecular Interfaces. Mater. Today 2005, 8, 32−41.
    • (6) Huang, H.; Chen, S.; Gao, X.; Chen, W.; Wee, A. T. S. Structural and Electronic Properties of PTCDA Thin Films on Epitaxial Graphene. ACS Nano 2009, 3, 3431−3436.
    • (7) Gates, B. D.; Xu, Q.; Stewart, M.; Ryan, D.; Willson, C. G.; Whitesides, G. M. New Approaches to Nanofabrication: Molding, Printing, and Other Techniques. Chem. Rev. 2005, 105, 1171−1196.
    • (8) Wang, Q. H.; Hersam, M. C. Room-Temperature MolecularResolution Characterization of Self-Assembled Organic Monolayers on Epitaxial Graphene. Nat. Chem. 2009, 1, 206−211.
    • (9) Zhang, J. L.; Zhong, S.; Zhong, J. Q.; Niu, T. C.; Hu, W. P.; Wee, A. T. S.; Chen, W. Rational Design of Two-Dimensional Molecular Donor-Acceptor Nanostructure Arrays. Nanoscale 2015, 7, 4306− 4324.
    • (10) Lackinger, M.; Griessl, S.; Markert, T.; Jamitzky, F.; Heckl, W.
    • M. Self-Assembly of Benzene−Dicarboxylic Acid Isomers at the Liquid Solid Interface: Steric Aspects of Hydrogen Bonding. J. Phys. Chem. B 2004, 108, 13652−13655.
    • (11) Blunt, M. O.; Adisoejoso, J.; Tahara, K.; Katayama, K.; Van der Auweraer, M.; Tobe, Y.; De Feyter, S. Temperature-Induced Structural Phase Transitions in a Two-Dimensional Self-Assembled Network. J.
    • Am. Chem. Soc. 2013, 135, 12068−12075.
    • (12) Marie, C.; Silly, F.; Tortech, L.; Müllen, K.; Fichou, D. Tuning the Packing Density of 2D Supramolecular Self-Assemblies at the Solid−Liquid Interface Using Variable Temperature. ACS Nano 2010, 4, 1288−1292.
    • (13) Silly, F. Two-Dimensional 1,3,5-Tris(4-Carboxyphenyl)Benzene Self-Assembly at the 1-Phenyloctane/Graphite Interface Revisited. J.
    • Phys. Chem. C 2012, 116, 10029−10032.
    • (14) Mamdouh, W.; Uji-i, H.; Ladislaw, J. S.; Dulcey, A. E.; Percec, V.; De Schryver, F. C.; De Feyter, S. Solvent Controlled Self-Assembly at the Liquid-Solid Interface Revealed by STM. J. Am. Chem. Soc. 2006, 128, 317−325.
    • (15) Zhang, X.; Chen, T.; Chen, Q.; Deng, G.-J.; Fan, Q.-H.; Wan, L.-J. One Solvent Induces a Series of Structural Transitions in Monodendron Molecular Self-Assembly from Lamellar to Quadrangular to Hexagonal. Chem. - Eur. J. 2009, 15, 9669−9673.
    • (16) Lee, S.-L.; Chi, C.-Y. J.; Huang, M.-J.; Chen, C.-h.; Li, C.-W.; Pati, K.; Liu, R.-S. Shear-Induced Long-Range Uniaxial Assembly of Polyaromatic Monolayers at Molecular Resolution. J. Am. Chem. Soc.
    • (17) Balandina, T.; Tahara, K.; San̈dig, N.; Blunt, M. O.; Adisoejoso, J.; Lei, S.; Zerbetto, F.; Tobe, Y.; De Feyter, S. Role of Substrate in Directing the Self-Assembly of Multicomponent Supramolecular Networks at the Liquid−Solid Interface. ACS Nano 2012, 6, 8381− 8389.
    • (18) Song, W.; Martsinovich, N.; Heckl, W. M.; Lackinger, M.
    • Thermodynamics of Halogen Bonded Monolayer Self-Assembly at the Liquid-Solid Interface. Chem. Commun. 2014, 50, 13465−13468.
    • (19) Mazur, U.; Hipps, K. W. Kinetic and Thermodynamic Processes of Organic Species at the Solution-Solid Interface: The View through an STM. Chem. Commun. 2015, 51, 4737−4749.
    • (20) Weigelt, S.; Busse, C.; Petersen, L.; Rauls, E.; Hammer, B.; Gothelf, K. V.; Besenbacher, F.; Linderoth, T. R. Chiral Switching by Spontaneous Conformational Change in Adsorbed Organic Molecules.
    • Nat. Mater. 2006, 5, 112−117.
    • (21) Patrick, D. L.; Cee, V. J.; Beebe, T. P. Molecule Corrals for Studies of Monolayer Organic Films. Science 1994, 265, 231−234.
    • (22) Zhu, Y. J.; McBride, J. D.; Hansen, T. A.; Beebe, T. P.
    • B 2001, 105, 2010−2018.
    • (23) Zhu, Y. J.; Hansen, T. A.; Ammermann, S.; McBride, J. D.; Beebe, T. P. Nanometer-Size Monolayer and Multilayer Molecule Corrals on HOPG: A Depth-Resolved Mechanistic Study by STM. J.
    • Phys. Chem. B 2001, 105, 7632−7638.
    • (24) de Oteyza, D. G.; Barrena, E.; Dosch, H.; Wakayama, Y.
    • Nanoconfinement Effects in the Self-Assembly of Diindenoperylene (DIP) on Cu(111) Surfaces. Phys. Chem. Chem. Phys. 2009, 11, 8741− 8744.
    • (25) Cirera, B.; Zhang, Y.-Q.; Björk, J.; Klyatskaya, S.; Chen, Z.; Ruben, M.; Barth, J. V.; Klappenberger, F. Synthesis of Extended Graphdiyne Wires by Vicinal Surface Templating. Nano Lett. 2014, 14, 1891−1897.
    • (26) Fan, Q. T.; Dai, J. Y.; Wang, T.; Kuttner, J.; Hilt, G.; Gottfried, J.
    • M.; Zhu, J. F. Confined Synthesis of Organometallic Chains and Macrocycles by Cu−O Surface Templating. ACS Nano 2016, 10, 3747−3754.
    • (27) Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Confinement of Electrons to Quantum Corrals on a Metal Surface. Science 1993, 262, 218−220.
    • (28) Cheng, Z.; Wyrick, J.; Luo, M.; Sun, D.; Kim, D.; Zhu, Y.; Lu, W.; Kim, K.; Einstein, T. L.; Bartels, L. Adsorbates in a Box: Titration of Substrate Electronic States. Phys. Rev. Lett. 2010, 105, 066104.
    • (29) Pawin, G.; Wong, K. L.; Kwon, K.-Y.; Bartels, L. A Homomolecular Porous Network at a Cu(111). Science 2006, 313, 961−962.
    • (30) Greenwood, J.; Phan, T. H.; Fujita, Y.; Li, Z.; Ivasenko, O.; Vanderlinden, W.; Van Gorp, H.; Frederickx, W.; Lu, G.; Tahara, K.; Tobe, Y.; Uji-i, H.; Mertens, S. F. L.; De Feyter, S. Covalent Modification of Graphene and Graphite Using Diazonium Chemistry: Tunable Grafting and Nanomanipulation. ACS Nano 2015, 9, 5520− 5535.
    • (31) Downard, A. J. Electrochemically Assisted Covalent Modification of Carbon Electrodes. Electroanalysis 2000, 12, 1085−1096.
    • (32) Combellas, C.; Kanoufi, F.; Pinson, J.; Podvorica, F. I. Sterically Hindered Diazonium Salts for the Grafting of a Monolayer on Metals.
    • J. Am. Chem. Soc. 2008, 130, 8576−8577.
    • (33) Lee, L.; Brooksby, P. A.; Hapiot, P.; Downard, A. J.
    • Electrografting of 4-Nitrobenzenediazonium Ion at Carbon Electrodes: Catalyzed and Uncatalyzed Reduction Processes. Langmuir 2016, 32, 468−476.
    • (34) Belanger, D.; Pinson, J. Electrografting: A Powerful Method for Surface Modification. Chem. Soc. Rev. 2011, 40, 3995−4048.
    • (35) Scudiero, L.; Hipps, K. W. Controlled Manipulation of SelfOrganized Ni(II)-Octaethylporphyrin Molecules Deposited from Solution on HOPG with a Scanning Tunneling Microscope. J. Phys.
    • Chem. C 2007, 111, 17516−17520.
    • (36) MacLeod, J. M.; Ivasenko, O.; Fu, C. Y.; Taerum, T.; Rosei, F.; Perepichka, D. F. Supramolecular Ordering in OligothiopheneFullerene Monolayers. J. Am. Chem. Soc. 2009, 131, 16844−16850.
    • (37) Lackinger, M.; Heckl, W. M. Carboxylic Acids: Versatile Building Blocks and Mediators for Two-Dimensional Supramolecular Self-Assembly. Langmuir 2009, 25, 11307−11321.
    • (38) Dickerson, P. N.; Hibberd, A. M.; Oncel, N.; Bernasek, S. L.
    • Hydrogen-Bonding versus van der Waals Interactions in SelfAssembled Monolayers of Substituted Isophthalic Acids. Langmuir 2010, 26, 18155−18161.
    • (39) Park, K. W.; Adisoejoso, J.; Plas, J.; Hong, J.; Mullen, K.; De Feyter, S. Self-Assembly Behavior of Alkylated Isophthalic Acids Revisited: Concentration in Control and Guest-Induced Phase Transformation. Langmuir 2014, 30, 15206−15211.
    • (40) Okawa, Y.; Aono, M. Linear Chain Polymerization Initiated by a Scanning Tunneling Microscope Tip at Designated Positions. J. Chem.
    • Phys. 2001, 115, 2317−2322.
    • (41) Giridharagopal, R.; Kelly, K. F. Substrate-Dependent Properties of Polydiacetylene Nanowires on Graphite and MoS2. ACS Nano 2008, 2, 1571−1580.
    • (42) Deshpande, A.; Sham, C. H.; Alaboson, J. M. P.; Mullin, J. M.; Schatz, G. C.; Hersam, M. C. Self-Assembly and Photopolymerization of Sub-2 nm One-Dimensional Organic Nanostructures on Graphene.
    • J. Am. Chem. Soc. 2012, 134, 16759−16764.
    • (43) Cougnon, C.; Nguyen, N. H.; Dabos-Seignon, S.; Mauzeroll, J.; Beĺanger, D. Carbon Surface Derivatization by Electrochemical Reduction of a Diazonium Salt in situ Produced from the Nitro Precursor. J. Electroanal. Chem. 2011, 661, 13−19.
    • (44) Braganca, A. M.; Greenwood, J.; Ivasenko, O.; Phan, T. H.; Mullen, K.; De Feyter, S. The Impact of Grafted Surface Defects and Their Controlled Removal on Supramolecular Self-Assembly. Chem.
    • Sci. 2016, DOI: 10.1039/C6SC02400A.
    • (45) Gilbert, E. P.; White, J. W.; Senden, T. J. Evidence for Perpendicular n-Alkane Orientation at the Liquid/Graphite Interface.
    • Chem. Phys. Lett. 1994, 227, 443−446.
    • (46) Kim, K.; Plass, K. E.; Matzger, A. J. Kinetic and Thermodynamic Forms of a Two-Dimensional Crystal. Langmuir 2003, 19, 7149−7152.
    • (47) Belcher, A. M.; Wu, X. H.; Christensen, R. J.; Hansma, P. K.; Stucky, G. D.; Morse, D. E. Control of Crystal Phase Switching and Orientation by Soluble Mollusc-Shell Proteins. Nature 1996, 381, 56− 58.
    • (48) Aizenberg, J.; Black, A. J.; Whitesides, G. M. Control of Crystal Nucleation by Patterned Self-Assembled Monolayers. Nature 1999, 398, 495−498.
    • (49) Pinson, J.; Podvorica, F. Attachment of Organic Layers to Conductive or Semiconductive Surfaces by Reduction of Diazonium Salts. Chem. Soc. Rev. 2005, 34, 429−439.
    • (50) Lehr, J.; Garrett, D. J.; Paulik, M. G.; Flavel, B. S.; Brooksby, P.
    • A.; Williamson, B. E.; Downard, A. J. Patterning of Metal, Carbon, and Semiconductor Substrates with Thin Organic Films by Microcontact Printing with Aryldiazonium Salt Inks. Anal. Chem. 2010, 82, 7027− 7034.
    • (51) Laforgue, A.; Addou, T.; Belanger, D. Characterization of the Deposition of Organic Molecules at the Surface of Gold by the Electrochemical Reduction of Aryldiazonium Cations. Langmuir 2005, 21, 6855−6865.
    • (52) Liu, G. Z.; Bocking, T.; Gooding, J. J. Diazonium Salts: Stable Monolayers on Gold Electrodes for Sensing Applications. J.
    • Electroanal. Chem. 2007, 600, 335−344.
    • (53) Laurentius, L.; Stoyanov, S. R.; Gusarov, S.; Kovalenko, A.; Du, R. B.; Lopinski, G. P.; McDermott, M. T. Diazonium-Derived Aryl Films on Gold Nanoparticles: Evidence for a Carbon-Gold Covalent Bond. ACS Nano 2011, 5, 4219−4227.
    • (54) Shewchuk, D. M.; McDermott, M. T. Comparison of Diazonium Salt Derived and Thiol Derived Nitrobenzene Layers on Gold. Langmuir 2009, 25, 4556−4563.
    • (55) Lehr, J.; Williamson, B. E.; Flavel, B. S.; Downard, A. J. Reaction of Gold Substrates with Diazonium Salts in Acidic Solution at OpenCircuit Potential. Langmuir 2009, 25, 13503−13509.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

  • EC | NANOGRAPH@LSI

Cite this article