Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Ribeiro, João; Silva, Pedro; Duarte, Ricardo; Davids, Keith; Garganta, Júlio (2017)
Publisher: Springer-Verlag
Languages: English
Types: Article
This paper discusses how social network analyses and graph theory can be implemented in team sports performance analyses to evaluate individual (micro) and collective (macro) performance data, and how to use this information for designing practice tasks. Moreover, we briefly outline possible limitations of social network studies and provide suggestions for future research. Instead of cataloguing discrete events or player actions, it has been argued that researchers need to consider the synergistic interpersonal processes emerging between teammates in competitive performance environments. Theoretical assumptions on team coordination prompted the emergence of innovative, theoretically-driven methods for assessing collective team sport behaviours. Here, we contribute to this theoretical and practical debate by conceptualising sports teams as complex social networks. From this perspective, players are viewed as network nodes, connected through relevant information variables (e.g., a ball passing action), sustaining complex patterns of interaction between teammates (e.g., a ball passing network). Specialized tools and metrics related to graph theory could be applied to evaluate structural and topological properties of interpersonal interactions of teammates, complementing more traditional analysis methods. This innovative methodology moves beyond use of common notation analysis methods, providing a richer understanding of the complexity of interpersonal interactions sustaining collective team sports performance. The proposed approach provides practical applications for coaches, performance analysts, practitioners and researchers by establishing social network analyses as a useful approach for capturing the emergent properties of interactions between players in sports teams.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article