LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bowen, Jenna Louise
Languages: English
Types: Doctoral thesis
Subjects: RM
Lipopolysaccharide (LPS) is commonly implicated in the development and rapid progression of sepsis however no efficient diagnostic assay currently exists. The over-arching aim of this project was therefore to develop a novel biomimetic peptide-polymer hybrid system capable of recognising and binding LPS in a variety of biologically relevant environments. Target selective peptides (both commercially available and synthesised) have been used as high affinity 'functional monomers' in a molecular imprinting approach. To reduce the concept to practice, a bi-functionalised resin was prepared so as to allow the use of two independent surface attachment strategies. Controlled polymer growth was initiated from surface bound iniferter groups whilst the attachment of the peptide was achieved through amme-amine imidoester linkages or via azide-alkyne "click" chemistry. Polymyxin, a small, conformationally constrained cyclic peptide that possesses high affinity for lipopolysaccharide (LPS) was used to provide proof-of-principle. Polymyxin resins, produced via the immobilisation of alkyne derivitised polymyxin B on the surface of azidomethyl polystyrene via "click" chemistry, were able to efficiently bind LPS from aqueous solutions with an apparent Ka of 0.2 μM. Although the development of the peptide-polymer hybrid system using these resins appeared somewhat unsuccessful, whether the observed reduction in binding is due to changes in the Bmax or the Kd of the resin remains to be elucidated. The assay performed with the polymerisation samples produced using resin displaying polymyxin immobilised via a dimethyl adipimidate linker, suggest that the hypothesised approach is feasible but that optimisation of a number of variables is needed before definitive results can be obtained.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article