LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Biswas, P. K. (Pabitra K.); Lees, Martin R.; Hillier, A. D. (Adrian D.); Smith, R. I.; Marshall, W. G.; Paul, Don McK. (2011)
Publisher: American Physical Society
Languages: English
Types: Article
Subjects: QC

Classified by OpenAIRE into

arxiv: Condensed Matter::Superconductivity
Two superconducting phases of Re(3)W have been found with different physical properties. One phase crystallizes in a noncentrosymmetric cubic (alpha-Mn) structure and has a superconducting transition temperature T(c) of 7.8 K. The other phase has a hexagonal centrosymmetric structure and is superconducting with a T(c) of 9.4 K. Switching between the two phases is possible by annealing the sample or remelting it. The properties of both phases of Re(3)W have been characterized by powder neutron diffraction, magnetization, and resistivity measurements. The temperature dependences of the lower and upper critical fields have been measured for both phases. These are used to determine the penetration depths and the coherence lengths for these systems.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 1Physics Department, University of Warwick, Coventry, CV4 7AL, United Kingdom 2ISIS Facility, Science and Technology Facilities Council, Rutherford Appleton Laboratory, Chilton, Oxfordshire, OX11 0QX, U.K. (Dated: November 8, 2011) ∗
    • 1 E. Bauer, G. Hilscher, H. Michor, C. Paul, E. W. Scheidt, A. Gribanov, Y. Seropegin, H. No¨el, M. Sigrist, and P. Rogl, Phys. Rev. Lett. 92, 027003 (2004).
    • 2 L. P. Gor'kov and E. I. Rashba, Phys. Rev. Lett. 87, 037004 (2001).
    • 3 P. A. Frigeri, D. F. Agterberg, A. Koga, and M. Sigrist, Phys. Rev. Lett. 92, 097001 (2004).
    • 4 V. P. Mineev, Phys. Rev. B 71, 012509 (2005).
    • 5 N. Kimura, K. Ito, K. Saitoh, Y. Umeda, H. Aoki, and T. Terashima, Phys. Rev. Lett. 95, 247004 (2005).
    • 6 I. Sugitani, Y. Okuda, H. Shishido, T. Yamada, A. Thamizhavel, E. Yamamoto, T. D. Matsuda, Y. Haga, T. Takeuchi, R. Settai, et al., Journal of the Physical Society of Japan 75, 043703 (2006).
    • 7 N. Metoki, K. Kaneko, T. D. Matsuda, A. Galatanu, T. Takeuchi, S. Hashimoto, T. Ueda, R. Settai, Y. O-nuki, and N. Bernhoeft, J. Phys.: Condens. Matter 16, L207 (2004).
    • 8 T. Akazawa, H. Hidaka, H. Kotegawa, T. C. Kobayashi, T. Fujiwara, E. Yamamoto, Y. Haga, R. Settai, and Y. O¯nuki, Journal of the Physical Society of Japan 73, 3129 (2004).
    • 9 J. K. Hulm and R. D. Blaugher, J. Phys. Chem. Solids 19, 134 (1961).
    • 10 R. D. Blaugher, A. Taylor, and J. K. Hulm, IBM J. Res. Dev. 6, 116 (1962).
    • 11 Y. L. Zuev, V. A. Kuznetsova, R. Prozorov, M. D. Vannette, M. V. Lobanov, D. K. Christen, and J. R. Thompson, Phys. Rev. B 76, 132508 (2007).
    • 12 V. A. Kuznetsova, Ph.D. thesis, University of Tennessee (2007).
    • 13 Y. Huang, J. Yan, Y. Wang, L. Shan, Q. Luo, W. Wang, and H.-H. Wen, Supercond. Sci. Technol. 21, 075011 (2008).
    • 14 P. Day, J. E. Enderby, W. G. Williams, L. C. Chapon, A. Hannon, P. G. Radaelli, and A. K. Soper, Neutron News 15, 19 (2004).
    • 15 B. H. Toby, Journal of Applied Crystallography 34, 210 (2001).
    • 16 A. C. Larson and R. B. Von Dreele, Los Alamos National Laboratory Report LAUR 86-748 (2000).
    • 17 T. P. Orlando, E. J. McNiff, S. Foner, and M. R. Beasley, Phys. Rev. B 19, 4545 (1979).
    • 18 R. G. Mints and A. L. Rakhmanov, Rev. Mod. Phys. 53, 551 (1981).
    • 19 N. R. Werthamer, E. Helfand, and P. C. Hohenberg, Phys. Rev. 147, 295 (1966).
    • 20 E. Helfand and N. R. Werthamer, Phys. Rev. 147, 288 (1966).
    • 21 S. V. Shulga, S.-L. Drechsler, G. Fuchs, K.-H. Mu¨ller, K. Winzer, M. Heinecke, and K. Krug, Phys. Rev. Lett. 80, 1730 (1998).
    • 22 I. Shigeta, T. Abiru, K. Abe, A. Nishida, and Y. Matsumoto, Physica C 392-396, 359 (2003).
    • 23 Y. Takano, H. Takeya, H. Fujii, H. Kumakura, T. Hatano, K. Togano, H. Kito, and H. Ihara, Appl. Phys. Lett. 78, 2914 (2001).
    • 24 A. B. Karki, Y. M. Xiong, N. Haldolaarachchige, S. Stadler, I. Vekhter, P. W. Adams, D. P. Young, W. A. Phelan, and J. Y. Chan, Phys. Rev. B 83, 144525 (2011).
    • 25 R. Micnas, J. Ranninger, and S. Robaszkiewicz, Rev. Mod. Phys. 62, 113 (1990).
    • 26 E. H. Brandt, Phys. Rev. B 37, 2349 (1988).
    • 27 M. Tinkham, Introduction to Superconductivity (McGrawHill, New York, 1975).
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article