Remember Me
Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:

OpenAIRE is about to release its new face with lots of new content and services.
During September, you may notice downtime in services, while some functionalities (e.g. user registration, validation, claiming) will be temporarily disabled.
We apologize for the inconvenience, please stay tuned!
For further information please contact helpdesk[at]openaire.eu

fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Nesi, Vincenzo; Palombaro, Mariapia; Ponsiglione, Marcello (2014)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: QA299
This paper deals with higher gradient integrability for σ-harmonic functions u with discontinuous coefficients σ, i.e. weak solutions of div(σ∇u)=0 in dimension two. When σ is assumed to be symmetric, then the optimal integrability exponent of the gradient field is known thanks to the work of Astala and Leonetti and Nesi. When only the ellipticity is fixed and σ is otherwise unconstrained, the optimal exponent is established, in the strongest possible way of the existence of so-called exact solutions, via the exhibition of optimal microgeometries.\ud \ud We focus also on two-phase conductivities, i.e., conductivities assuming only two matrix values, σ1 and σ2, and study the higher integrability of the corresponding gradient field |∇u| for this special but very significant class. The gradient field and its integrability clearly depend on the geometry, i.e., on the phases arrangement described by the sets Ei=σ−1(σi). We find the optimal integrability exponent of the gradient field corresponding to any pair {σ1,σ2} of elliptic matrices, i.e., the worst among all possible microgeometries.\ud \ud We also treat the unconstrained case when an arbitrary but finite number of phases are present.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article

Cookies make it easier for us to provide you with our services. With the usage of our services you permit us to use cookies.
More information Ok