LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Cameron, R.P.; Barnett, S.M.; Yao, A.M. (2014)
Publisher: Institute of Physics Publishing Ltd.
Languages: English
Types: Article
Subjects:
We suggest that the force F exerted upon a chiral molecule by light assumes the form under appropriate circumstances, where a and b pertain to the molecule whilst w and h are the local densities of electric energy and helicity in the optical field; the gradients of these quantities thus governing the molecule's centre-of-mass motion. Whereas a is identical for the mirror-image forms or enantiomers of the molecule, b has opposite signs; the associated contribution to F therefore pointing in opposite directions. A simple optical field is presented for which vanishes but does not, so that F is absolutely discriminatory. We then present two potential applications: a Stern–Gerlach-type deflector capable of spatially separating the enantiomers of a chiral molecule and a diffraction grating to which chiral molecules alone are sensitive; the resulting diffraction patterns thus encoding information about their chiral geometry.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Lord Kelvin 1894 The molecular tactics of a crystal J. Oxford Univ. Jr. Sci. Club 18 3-57
    • [2] Bentley R 2010 Chiral: a confusing etymology Chirality 22 1-2
    • [3] Lough W J and Wainer I W 2002 Chirality in Natural and Applied Science (Cornwall: Blackwell)
    • [4] Lee T D and Yang C N 1956 Question of parity conservation in weak interactions Phys. Rev. 104 254-8
    • [5] Wu C S, Ambler E, Hayward R W, Hoppes D D and Hudson R P 1957 Experimental test of parity conservation in beta decay Phys. Rev. 105 1413-5
    • [6] Kondepudi D K and Durand D J 2001 Chiral asymmetry in spiral galaxies? Chirality 13 351-56
    • [7] Barron L D 2004 Molecular Light Scattering and Optical Activity (Cambridge: Cambridge University Press)
    • [8] Newman M S, Lutz W B and Lednicer D 1955 A new reagent for resolution by complex formation the resolution of phenanthro [3, 4-c] phenanthrene J. Am. Chem. Soc. 77 3420-1
    • [9] Newman M S and Lednicer D 1956 The synthesis and resolution of hexahelicene J. Am. Chem. Soc. 78 4765-70
    • [10] Bonner W A 1995 Chirality and life Origins Life Evol. B 25 175-90
    • [11] Patterson D, Schnell M and Doyle J M 2013 Enantiomer-specific detection of chiral molecules via microwave spectroscopy Nature 497 475-8
    • [12] Nafie L A 2013 Handedness detected by microwaves Nature 497 446-8
    • [13] Craig D P and Thirunamachandran T 1998 Molecular Quantum Electrodynamics: An Introduction to Radiation Molecule Interactions (New York: Dover)
    • [14] Mason S F 1982 Molecular Optical Activity and the Chiral Discriminations (Cambridge: Cambridge University Press)
    • [15] Salam A 2010 Molecular Quantum Electrodynamics (Hoboken, NJ: Wiley)
    • [16] Li Y, Bruder C and Sun C P 2007 Generalized Stern-Gerlach effect for chiral molecules Phys. Rev. Lett. 99 0130403
    • [17] Spivak B and Andreev A V 2009 Photoinduced separation of chiral isomers in a classical buffer gas Phys. Rev. Lett. 102 063004
    • [18] Xuan L and Shapiro M 2010 Spatial separation of enantiomers by coherent optical means J. Chem. Phys. 132 041101
    • [19] Xuan L and Shapiro M 2010 Theory of the spatial separation of racemic mixtures of chiral molecules J. Chem. Phys. 132 194315
    • [20] Eilam A and Shapiro M 2013 Spatial separation of chiral molecules Phys. Rev. Lett. 110 213004
    • [21] Canaguier-Durand A, Hutchison J A, Genet C and Ebbesen T W 2013 Mechanical separation of chiral dipoles by chiral light arXiv:1306.3708v1
    • [22] Atkins P and Friedman R 2011 Molecular Quantum Mechanics (Oxford: Oxford University Press)
    • [23] Cohen-Tannoudji C, Dupont-Roc J and Grynberg G 1989 Photons and Atoms: Introduction to Quantum Electrodynamics (New York: Wiley)
    • [24] Jackson J D 1999 Classical Electrodynamics (New York: Wiley)
    • [25] Griffiths D J 2008 Introduction to Electrodynamics (Upper Saddle River, NJ: Pearson Education International)
    • [26] Cameron R P, Barnett S M and Yao A M 2013 Optical helicity of interfering waves J. Mod. Opt. doi:10.1080/09500340.2013.829874 (arXiv:1308.1308v1)
    • [27] Barnett S M and Loudon R 2006 On the electromagnetic force on a dielectric medium J. Phys. B: At. Mol. Opt. Phys. 39 3671-84
    • [28] Hinds E and Barnett S M 2009 Momentum exchange between light and a single atom: Abraham or Minkowski? Phys. Rev. Lett. 102 050403
    • [29] Barnett S M 2010 Resolution of the Abraham-Minkowski dilemma Phys. Rev. Lett. 104 070401
    • [30] Barnett S M and Loudon R 2010 The enigma of optical momentum in a medium Phil. Trans. R. Soc. A 368 927-39
    • [31] Bonin K D and Kresin V V 1997 Electric-Dipole Polarizabilities of Atoms, Molecules and Clusters (Singapore: World Scientific)
    • [32] Metcalf H J 1999 Laser Cooling and Trapping (New York: Springer)
    • [33] Seideman T 1999 New means of spatially manipulating molecules with light J. Chem. Phys. 111 4397-405
    • [34] Friedrich B and Herschbach D 1995 Alignment and trapping of molecules in intense laser fields Phys. Rev. Lett. 74 4623-6
    • [35] Friedrich B and Herschbach D 1995 Polarization of molecules induced by intense nonresonant laser fields J. Phys. Chem. 99 15686-93
    • [36] Seideman T 1997 Manipulating external degrees of freedom with intense light: laser focussing and trapping of molecules J. Chem. Phys. 106 2881-92
    • [37] Seideman T 1997 Molecular optics in an intense laser field: a route to nanoscale material design Phys. Rev. A 56 R17-20
    • [38] Seideman T 1997 Shaping molecular beams with intense light J. Chem. Phys. 107 10420-9
    • [39] Seideman T and Kharchenko V 1998 Two-dimensional scattering of slow molecules by laser beams J. Chem. Phys. 108 6272-81
    • [40] Yen Z-C and Seideman T 1999 Photomanipulation of external molecular modes: A time-dependent self-consistent-field approach J. Chem. Phys. 111 4113-20
    • [41] Friedrich B 2000 Slowing of supersonically cooled atoms and molecules by time-varying nonresonant induced dipole forces Phys. Rev. A 61 025403
    • [42] Ryytty P and Kaivola M 2000 Pulsed standing-wave mirror for neutral atoms and molecules Phys. Rev. Lett. 84 5074-7
    • [43] Barker P F and Shneider M N 2001 Optical microlinear accelerator for molecules and atoms Phys. Rev. A 64 033408
    • [44] Barker P F and Shneider M N 2002 Slowing molecules by optical microlinear deceleration Phys. Rev. A 66 065402
    • [45] Gordon R J, Zhu L, Schroeder W A and Seideman T 2003 Nanolithography using molecular optics J. Appl. Phys. 94 669-76
    • [46] Dong G, Lu W and Barker P F 2003 Collisionless Boltzmann equation with an external periodic traveling force: analytical solution and application to molecular optics Phys. Rev. E 68 016607
    • [47] Dong G, Lu W and Barker P F 2004 Decelerating and bunching molecules with pulsed traveling optical lattices Phys. Rev. A 69 013409
    • [48] Dong G, Edvadsson S, Lu W and Barker P F 2005 Super-Gaussian mirror for high-field-seeking molecules Phys. Rev. A 72 031605
    • [49] Barker P F, Purcell S M and Shneider M N 2008 Spectra of molecular gases trapped in deep optical lattices Phys. Rev. A 77 063409
    • [50] Stapelfeldt H, Sakai H, Constant E and Corkum P B 1997 Deflection of neutral molecules using the nonresonant dipole force Phys. Rev. Lett. 79 2787-90
    • [51] Sakai H, Tarasevitch A, Danilov J, Stapelfeldt H, Yip R W, Ellert C, Constant E and Corkum P B 1998 Optical deflection of molecules Phys. Rev. A 57 2794-801
    • [52] Sakai H, Safvan C P, Larsen J J, Hilligsøe K M, Hald K and Stapelfeldt H 1999 Controlling the alignment of neutral molecules by a strong laser field J. Chem. Phys. 110 10235-8
    • [53] Zhao B S et al 2000 Molecular lens of the nonresonant dipole force Phys. Rev. Lett. 85 2705-8
    • [54] Larsen J J, Hald K, Bjerre N and Stapelfeldt H 2000 Three dimensional alignment of molecules using elliptically polarized laser fields Phys. Rev. Lett. 85 2470-3
    • [55] Ballard A, Bonin K and Louderback J 2000 Absolute measurement of the optical polarizability of C60 J. Chem. Phys. 113 5732-5
    • [56] Chung H S, Zhao B S, Lee S H, Hwang S, Cho K, Shim S-H, Lim S-M, Kang W K and Chung D S 2001 Molecular lens applied to benzene and carbon disulfide molecular beams J. Chem. Phys. 114 8293-302
    • [57] Nairz O, Brezger B, Arndt M and Zeilinger A 2001 Diffraction of complex molecules by structures made of light Phys. Rev. Lett. 87 160401
    • [58] Zhao B S, Lee S H, Chung H S, Hwang S, Kang W K, Friedrich B and Chung D S 2003 Separation of a benzene and nitric oxide mixture by a molecule prism J. Chem. Phys. 119 8905-9
    • [59] Fulton R, Bishop A I and Barker P F 2004 Optical Stark decelerator for molecules Phys. Rev. Lett. 93 243004
    • [60] Fulton R, Bishop A I, Shneider M N and Barker P F 2006 Controlling the motion of cold molecules with deep periodic optical potentials Nature Phys. 2 465-8
    • [61] Fulton R, Bishop A I, Shneider M N and Barker P F 2006 Optical stark deceleration of nitric oxide and benzene molecules using optical lattices J. Phys. B: At. Mol. Opt. Phys. 39 S1097-109
    • [62] Gerlich S et al 2007 A Kapitza-Dirac-Talbot-Lau interferometer for highly polarizable molecules Nature Phys. 3 711-5
    • [63] Hackermüller L, Hornberger K, Gerlich S, Gring M, Ulbricht M and Arndt M 2007 Optical polarizabilities of large molecules measured in near-field interferometry Appl. Phys. B 89 469-73
    • [64] Gerlich S, Gring M, Ulbricht H, Hornberger K, Tüxen J, Mayor M and Arndt M 2008 Matter-wave metrology as a complementary tool for mass spectrometry Angew. Chem. Int. Edn Engl. 47 6195-8
    • [65] Purcell S M and Barker P F 2009 Tailoring the optical dipole force for molecules by field-induced alignment Phys. Rev. Lett. 103 153001
    • [66] Ortigoso J and Rodríguez M 2009 Molecular optics: controlling the dipole force Nature Photon. 3 685-6
    • [67] Bishop A I, Wang L and Barker P F 2010 Creating cold stationary molecular gases by optical stark deceleration New. J. Phys. 12 073028
    • [68] Bateman H 1915 The Mathematical Analysis of Electrical and Optical Wave-Motion on the Basis of Maxwell's Equations (Cambridge: Cambridge University Press)
    • [69] Cameron R P 2014 On the 'second potential' in electrodynamics J. Opt. 16 015708
    • [70] Candlin D J 1965 Analysis of the new conservation law in electromagnetic theory Il Nuovo Cimento 27 4106-11
    • [71] Cameron R P, Barnett S M and Yao A M 2012 Optical helicity, optical spin and related quantities in electromagnetic theory New. J. Phys. 14 053050
    • [72] Barnett S M, Cameron R P and Yao A M 2012 Duplex symmetry and its relation to the conservation of optical helicity Phys. Rev. A 86 013845
    • [73] Cameron R P and Barnett S M 2012 Electric-magnetic symmetry and Noether's theorem New. J. Phys. 14 123019
    • [74] Bliokh K Y, Bekshaev A Y and Nori F 2012 Dual electromagnetism: helicity, spin, momentum and angular momentum New J. Phys. 15 033026
    • [75] Heaviside O 1892 On the forces, stresses and fluxes of energy in the electromagnetic field Phil. Trans. R. Soc. Lond. A 183 423-80
    • [76] Larmor J 1897 Dynamical theory of the electric and luminiferous medium III Phil. Trans. R. Soc. Lond. A 190 205-300
    • [77] Calkin M G 1965 An invariance property of the free electromagnetic field Am. J. Phys. 33 958-60
    • [78] Barron L D 1986 True and false chirality and parity violation Chem. Phys. Lett. 123 423-7
    • [79] Barron L D 1986 True and false chirality and absolute asymmetric synthesis J. Am. Chem. Soc. 108 5539-42
    • [80] Barron L D 2012 From cosmic chirality to protein structure: Lord Kelvin's legacy Chirality 24 879-93
    • [81] Barron L D 2012 Cosmic chirality both true and false Chirality 24 957-8
    • [82] Coles M M and Andrews D L 2013 Photonic measures of helicity: optical vortices and circularly polarized reflection Opt. Lett. 38 869-71
    • [83] Lipkin D M 1964 Existence of a new conservation law in electromagnetic theory J. Math. Phys. 5 696-700
    • [84] Kibble T W B 1965 Conservation laws for free fields J. Math. Phys. 6 1022-6
    • [85] Tang Y and Cohen A E 2010 Optical chirality and its interaction with matter Phys. Rev. Lett. 104 163901
    • [86] Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy R V, Lapthorn A J, Kelly S M, Barron L D, Gadegaard N and Kadodwala M 2010 Ultrasensitive detection and characterization of biomolecules using superchiral fields Nature Nanotechnol. 5 783-7
    • [87] Bliokh K Y and Nori F 2011 Characterizing optical chirality Phys. Rev. A 83 021803
    • [88] Tang Y and Cohen A E 2011 Enhanced enatioselectivity in excitation of chiral molecules by superchiral light Science 332 333-6
    • [89] Yang N and Cohen A E 2011 Local geometry of electromagnetic fields and its role in molecular multipole transitions J. Phys. Chem. B 115 5304-11
    • [90] Smart A G 2011 A mirror gives light an extra twist Phys. Today 64 16-7
    • [91] Hendry E, Mikhaylovskiy R V, Barron L D, Kadodwala M and Davis T J 2012 Chiral electromagnetic fields generated by arrays of nanoslits Nano Lett. 12 3640-4
    • [92] Coles M M and Andrews D L 2012 Chirality and angular momentum in optical radiation Phys. Rev. A 85 063810
    • [93] Andrews D L and Coles M M 2012 Measures of chirality and angular momentum in the electromagnetic field Opt. Lett. 37 3009-11
    • [94] Schäferling M, Dregely D, Hentschel M and Giessen H 2012 Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures Phys. Rev. X 2 031010
    • [95] Rosales-Guzmán C, Volke-Sepulveda K and Torres J P 2012 Light with enhanced optical chirality Opt. Lett. 37 3486-8
    • [96] Choi J S and Cho M 2012 Limitations of a superchiral field Phys. Rev. A 86 063834
    • [97] Davis T J and Hendry E 2013 Superchiral electromagnetic fields created by surface plasmons in nonchiral metallica nanostructures Phys. Rev. B 87 085405
    • [98] Jerrard H G 1949 The formation of fringes in a Babinet compensator J. Opt. Soc. Am. 39 1031-5
    • [99] Mohanty S K, Rao K D and Gupta P K 2005 Optical trap with spatially varying polarization: application in controlled orientation of birefringent microscopic particle(s) Appl. Phys. B 80 631-4
    • [100] Cipparrone G, Ricardez-Vargas I, Pagliusi P and Provenzano C 2010 Polarization gradient: exploring an original route for optical trapping and manipulation Opt. Express 18 6008-13
    • [101] Zambrini R and Barnett S M 2007 Angular momentum of multimode and polarization patterns Opt. Express 15 15214-27
    • [102] Bernstein J 2010 The Stern Gerlach experiment arXiv:1007.2435v1
    • [103] Polavarapu P L and Zhao C 1998 A comparison of ab initio optical rotations obtained with static and dynamic methods Chem. Phys. Lett. 296 105-10
    • [104] Deachapunya S, Fagan P J, Major A G, Reiger E, Ritsch H, Stefanov A, Ulbricht H and Arndt M 2008 Slow beams of massive molecules Eur. Phys. J. D 46 307-13
    • [105] Arndt M and Hornberger K 2009 Quantum interferometry with complex molecules arXiv:0903.1614v1
    • [106] Gupta S, Leanhardt A E, Cronin A D and Pritchard D E 2001 Coherent manipulation of atoms with standing light waves C.R. Acad. Sci. 2 479-95
    • [107] Fitts D D and Kirkwood J G 1955 The theoretical optical rotation of phenanthro [3, 4-c] phenanthrene J. Am. Chem. Soc. 77 4940-1
    • [108] Barron L D 1975 Theoretical optical rotation of orientated hexahelicene J. Chem. Soc. Farad. Trans. 2 71 293-300
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    65
    65%
    46
    46%
  • No similar publications.

Share - Bookmark

Cite this article