Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Bragard, J.; Šimić, A.; Laroze, D.; Elorza, J. (2015)
Publisher: American Physical Society
Languages: English
Types: Article
Defibrillation is the standard clinical treatment used to stop ventricular fibrillation. An electrical device delivers a controlled amount of electrical energy via a pair of electrodes in order to reestablish the normal heart rate. We propose a new technique that is a combination of biphasic shocks applied with a four-electrode system rather than the standard two-electrode system. We use a numerical model of a one-dimensional ring of cardiac tissue in order to test and evaluate the benefit of such a new technique. We compare three different shock protocols, namely, a monophasic and two types of biphasic shocks. The results obtained by using a four-electrode system are compared quantitatively with those obtained with the standard two-electrode system. We find that a huge reduction in defibrillation threshold is achieved with the four-electrode system. For the most efficient protocol (asymmetric biphasic), we obtain a reduction in excess of 80 % in the energy required for a defibrillation success rate of 90 %. The mechanisms of successful defibrillation are also analyzed. This reveals that the advantage of asymmetric biphasic shocks with four electrodes lies in the duration of the cathodal and anodal phase of the shock.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [2] R. Koster, P. Dorian, F. Chapman, P. Schmitt, S. OGrady, and R. Walker, Am. Heart J. 147 (5), 1 (2004).
    • [3] J. P. Nolan, J. Soar, D. A. Zideman, D. Biarent, L. L. Bossaert, C. Deakin, R. W. Koster, J. Wyllie, and B. Bittiger, Resuscitation 81, 1219 (2010).
    • [4] L. J. Morrison, R. M. Henry, V. Ku, J. P. Nolan, P. Morley, and C. D. Deakin, Resuscitation 84, 1480 (2013).
    • [5] M. W. Kroll and C. D. Swerdlow, \Lessons for the clinical implant," in Cardiac Bioelectric Therapy., edited by I. E mov, M. Kroll, and P. Tchou (Springer, 2009) pp. 459{492.
    • [6] G. Boriani, M. Bi , P. Silvestri, C. Martignani, C. Valzania, I. Diemberger, C. Moulder, G. Mouchawar, M. Kroll, and A. Branzi, Heart Rhythm 2, 708 (2005).
    • [7] T. Tokano, D. Bach, J. Chang, J. Davis, J. J. Souza, A. Zivin, B. P. Knight, R. Goyal, K. C. Man, F. Morady, and S. A. Strickberger, J. Card. Electrophys. 9, 791 (1998).
    • [8] T. Schneider, P. Martens, H. Paschen, M. Kuisma, B. Wolcke, B. Gliner, J. Russell, W. Weaver, L. Bossaert, and D. Chamberlain, Circulation 102, 1780 (2000).
    • [9] P. Martens, J. Russell, B. Wolcke, H. Paschen, M. Kuisma, B. Gliner, W. Weaver, L. Bossaert, D. Chamberlain, and T. Schneider, Resuscitation 49, 233 (2001).
    • [10] C. Henriquez, Crit. Rev. Biomed. Eng. 21, 1 (1993).
    • [11] G. W. Beeler and H. Reuter, J. Physiol. 268, 177 (1977).
    • [12] J. Bragard, A. Simic, J. Elorza, R. O. Grigoriev, E. M. Cherry, R. F. Gilmour, N. F. Otani, and F. H. Fenton, Chaos 23, 3119 (2013).
    • [13] L. Glass and M. E. Josephson, Phys. Rev. Lett. 75, 2059 (1995).
    • [14] A. Pumir and V. I. Krinsky, Physica D 91, 205 (1996).
    • [15] T. Krogh-Madsen and D. J. Christini, Phys. Rev. E 80, 021924 (2009).
    • [16] S. Sinha and D. J. Christini, Phys. Rev. E 66, 061903 (2002).
    • [17] P. Comtois and A. Vinet, Chaos 12, 903 (2002).
    • [18] N. F. Otani, IEEE Trans. Biomed. Eng. 58, 2013 (2011).
    • [19] R. Plonsey, Biophys. J. 39, 309 (1982).
    • [20] V. G. Fast, S. Rohr, A. M. Gillis, and A. G. Kleber, Circulation Res. 82, 375 (1998).
    • [21] C. M. Ripplinger and I. R. E mov, \The virtual electrode hypothesis of de brillation," in Cardiac Bioelectric Therapy., edited by I. E mov, M. Kroll, and P. Tchou (Springer, 2009) pp. 331{356.
    • [22] T. Desplantez, E. Dupont, N. J. Severs, and R. Weingart, J. Membrane Biol. 218, 13 (2007).
    • [23] M. Courtemanche, Chaos 6(4), 579 (1996).
    • [24] R. Guttman and L. Hachmeister, Biophys. J. 12, 552 (1972).
    • [25] B. A. Roth, IEEE Trans. Biomed. Eng. 42, 1174 (1995).
    • [26] E. Cerbai, M. Barbieri, and A. Mugelli, Circulation 94, 1674 (1996).
    • [27] H. Yu, F. Chang, and I. S. Cohen, J. Physiol. 485, 469 (1995).
    • [28] R. Ranjan, N. Chiamvimonvat, N. V. Thakor, G. F. Tomaselli, and E. Marban, Biophys. J. 74, 1850 (1998).
    • [29] X. Zhou, W. M. Smith, D. L. Rollins, and R. E. Ideker, Am. J. Physiol. 271, H2536 (1996).
    • [30] K. A. DeBruin and W. Krassowska, Ann. Biomed. Eng. 26, 584 (1998).
    • [31] J. M. Pastore, S. D. Girouard, K. R. Laurita, F. G. Akar, and D. S. Rosenbaum, Circulation 99, 1385 (1999).
    • [32] S. Balay, J. Brown, K. Buschelman, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang, \PETSc Web page," (2012), http://www.mcs.anl.gov/petsc.
    • [33] Y. Saad and M. H. Schultz, Siam J. Sc. & Stat. Comp. 7, 856 (1986).
    • [34] D. McFadden, \Conditional logit analysis of qualitative choice behaviour," in Frontiers in Econometrics, edited by P. Zarembka (New York, Academic Press, 1974) pp. 105 { 142.
    • [35] S. Wood, Generalized Additive Models: An Introduction with R (Chapman and Hall/CRC, 2006).
    • [36] R Development Core Team, R: A Language and Environment for Statistical Computing , R Foundation for Statistical Computing, Vienna, Austria (2008).
    • [37] S. N. Wood, J. R. Stat. Soc. (B) 62, 413 (2000).
    • [38] S. N. Wood, J. R. Stat. Soc. (B) 73, 3 (2011).
    • [39] A. Davison and D. Hinkley, Bootstrap Methods and Their Application (Cambridge University Press, 1997).
    • [40] P. S. Chen, N. Shibata, E. G. Dixon, R. O. Martin, and R. E. Ideker, Circulation 73, 1022 (1986).
    • [41] E. G. Dixon, A. S. Tang, P. D. Wolf, J. T. Meador, M. J. Fine, R. V. Calfee, and R. E. Ideker, Circulation 76, 1176 (1987).
    • [42] C. Bishop, Neural Networks for Pattern Recognition (Oxford University Press, 1995).
    • [43] J. Weiss, P.-S. Chen, Z. Qu, H. Karagueuzian, and A. Gar nkel, Circulation Res. 87 (12), 1103 (2000).
    • [44] E. Cherry, F. Fenton, and R. J. Gilmour, Am. Heart J. 302 (12), H2451 (2012).
    • [45] J. Rhude, J. Sweeney, J. Reighard, and T. Brandon, in Proceedings of the First Joint BMES/EMBS Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Conference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society (Cat. No.99CH37015), Vol. 1 (IEEE, 1999) p. 317.
    • [46] A. N. Munsif, S. Saksena, P. Degroot, R. B. Krol, P. Mathew, I. Giorgberidze, R. R. Kaushik, and R. Mehra, Am. J. Cardiol. 79, 1632 (1997).
    • [47] R. A. S. Cooper, V. J. Plumb, A. E. Epstein, G. N. Kay, and R. E. Ideker, Circulation 97, 2527 (1998).
    • [48] W. A. J. Tacker, C. F. Babbs, J. D. Bourland, and L. A. Geddes, \Apparatus for controlling cardiac ventricular tachyarrhythmias," European Patent No EP 0095726(A1) (1983).
    • [49] K. F. Smits, \Cardioversion and de brillation lead method," United States Patent No US 4641656 (1987).
    • [50] R. E. Ideker, P. A. Guse, D. J. Lang, D. K. Swanson, and R. W. Dahl, \Low energy multiple shock de brillation/cardioversion discharge technique and electrode conguration," United States Patent 5107834 (1992).
    • [51] Y. Yamanouchi, K. Mowrey, M. Niebauer, P. Tchou, and B. Wilko , Circulation 96 (12), 4400 (1997).
    • [52] MATLAB, version 7.12.0 (R2011a) (The MathWorks Inc., Natick, Massachusetts, 2011).
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article