Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Selig, JM; Husty, M (2011)
Publisher: London South Bank University
Languages: English
Types: Article
A line symmetric motion is the motion obtained by reflecting a rigid body in the successive generator lines of a ruled surface. In this work we review the dual quaternion approach to rigid body displacements, in particular the representation of the group SE(3) by the Study quadric. Then some classical work on reflections in lines or half-turns is reviewed. Next two new characterisations of line symmetric motions are presented. These are used to study a number of examples one of which is a novel line symmetric motion given by a rational degree five curve in the Study quadric. The rest of the paper investigates the connection between sets of half-turns and linear subspaces of the Study quadric. Line symmetric motions produced by some degenerate ruled surfaces are shown to be restricted to certain 2-planes in the Study quadric. Reflections in the lines of a linear line complex lie in the intersection of the Study quadric with a 4-plane. © 2010 Elsevier Ltd. All rights reserved.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] W. Blaschke, Kinematik und Quaternionen, VEB Deutscher Verlag der Wissenschaften, Berlin, 1960.
    • [2] Borel E., “M´emoire sur les d´eplacements `a trajectoires sph´erique”, M´em. pr´esent´es par divers savants, Paris (2), 33, pp. 1-128, 1908.
    • [3] O. Bottema and B. Roth. Theoretical Kinematics. Dover Publications, New York, 1990.
    • [4] Bricard R., “M´emoire sur les d´eplacements `a trajectoires sph´erique”, Journ. E´ cole Polyt.(2), 11,pp. 1-96, 1906.
    • [5] W. K. Clifford. “Preliminary sketch of biquaternions”, in Proc. London Math. Soc., 1871 s1-4(1):381-395; doi:10.1112/plms/s1-4.1.381
    • [6] F.M. Dimentberg. “The screw calculus and its applications in mechanics”, Published by Wright-Patterson Air Force Base (Ohio). Foreign Technology Division. Translation Division, 1968. Translation of: Vintovoye ischisleniye i yego prilozheniya v mekhanike. Izdatel'stvo ”Nauka”, Glavnaya Redaktsiya, Fiziko-Matematicheskoy Literatury. Moskva, 1965.
    • [7] M. Husty. “E. Borel's and R. Bricard's Papers on Displacements with Spherical Paths and their Relevance to Self-motions of Parallel Manipulators”, in: International Symposium on History of Machines and MechanismsProceedings HMM 2000, Ed. M. Ceccarelli, Kluwer Acad. Pub., 163 - 172, ISBN 0-7923-6372-8, 2000.
    • [8] M. Husty. “Symmetrische Schrotungen im einfach isotropen Rau”, Sitzungberichte d. ¨osterr. Akad. d. Wiss., math.-nw. Kl., 195: 291-306, 1986.
    • [9] M. Husty. “ U¨ber eine symmetrische Schrotung mit einer Cayley-Fl¨ache als Grundfl¨ache”, Stud. Sci. Math. Hungarica, 22:463-469, 1987.
    • [10] M. Husty, A. Karger, H. Sachs, W. Steinhilper,: Kinematik und Robotik, Springer Verlag, Berlin - Heidelberg - New York, ISBN 3-540-63181-X, 633 S, 1997.
    • [11] M. Husty and A. Karger. “Self motions of Stewart-Gough platforms, an overview”, Proceedings of the workshop on “Fundamental Issues and Future Research Directions for Parallel Mechanisms and Manipulators”, Quebec City, pp. 131-141, 2002.
    • [12] A. Karger and M. Husty. “Classification of all self-motions of the original Stewart-Gough platform”, Computer-Aided Design, 30(3):205-215, 1998.
    • [13] J. Krames. “ U¨ber Fußpunktkurven von Regelfl¨achen und eine besondere Klasse von Raumbewegungen (ber symmetrische Schrotungen I)”, Mh. f. Math. u. Phys., Bd. 45, pp. 394-406, 1937.
    • [14] J. Krames. “Zur Bricardschen Bewegung, deren s¨amtliche Bahnkurven auf Kugeln liegen (ber symmetrische Schrotungen II)”, Mh. f. Math. u. Phys., Bd. 45, pp. 407-417, 1937.
    • [15] J. Krames. “Zur aufrechten Ellipsenbewegung des Raumes ( U¨ber symmetrische Schrotungen III)”, Mh. f. Math. u. Phys., Bd. 46, pp. 38-50, 1937.
    • [16] J. Krames. “Zur kubischen Kreisbewegung des Raumes, ( U¨ber symmetrische Schrotungen IV)”, Sitzungberichte d. ¨osterr. Akad. d. Wiss. math.- nw. Kl., Abt. IIa, 146, pp. 145-158, 1937.
    • [17] J. Krames. “Zur Geometrie des Bennett'schen Mechanismus, ( U¨ber symmetrische Schrotungen V)”, Sitzungberichte d. ¨osterr. Akad. d. Wiss. math.- nw. Kl., Abt. IIa, 146, pp. 159-173, 1937.
    • [18] J. Krames. “Die Borel-Bricard-Bewegung mit punktweise gekoppelten orthogonalen Hyperboloiden (ber symmetrische Schrotungen VI)”, Mh. f. Math. u. Phys., Bd. 46, pp. 172-195, 1937.
    • [19] J. Krames. “ U¨ber eine konoidale Regelfl¨ache fu¨nften Grades und die darauf gegru¨ndete symmetrische Schrotung”, Sitzungberichte d. ¨osterr. Akad. d. Wiss. math.-nw. Kl., Abt. IIa, 190:221-230, 1981.
    • [20] J. Rooney. “William Kingdon Clifford (1845-1879)” in Distinguished Figures in Mechanism and Machine Science: Their Contributions and Legacies Series: History of Mechanism and Machine Science, Vol. 1, Ed. M. Ceccarelli, Springer Verlag, New York, 2007.
    • [21] J.M. Selig. Geometric Fundamentals of Robotics. Springer Verlag, New York, 2005.
    • [22] E. Study. “Von den Bewegungen und Umlegungen”, Math. Ann. 39:441- 566, 1891.
    • [23] J. T¨olke. “Elementare Kennzeichnungen der symmetrischen Schrotung”, manuscripta mathematica, 15(4):309-321, 1975.
    • [24] H. Wresnik “Symmetrische Schrotungen an Verallgemeinerten Regelfl¨achen des En”, Journal of Geometry, 36(1-2):189-200, 1989.
    • [25] A. T. Yang. “Application of Quaternion Algebra and Dual Numbers to the Analysis of Spatial Mechanisms” Thesis Columbia University, New York. No. 64-2803 (University Microfilm, Ann Arbor, Michigan), 1963.
    • [26] Yang, A.T. and Freudenstein, F. “Application of dual number quaternion algebra to the analysis of spatial mechanism”, J. of Applied Mechanisms, 86:300-308, 1964.
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Cite this article