LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Billings, S.A.; Mao, K.Z. (1996)
Publisher: Department of Automatic Control and Systems Engineering
Languages: English
Types: Book
Subjects:
A new nonlinear rational model identification algorithm is introduced based on genetic algorithms. Compared with other rational model identification approaches, the new algorithm has two main advantages. First, this algorithm does not require a linear-in-the-parameters regression equation and as a consequence the severe noise problems induced by multiplying out the rational model are avoided. Second, the new algorithm provides near-optimal global parameter estimation. Unfortunately, this is balanced by an enormous computational load even when identifying models which consist of modest parameter sets. Simulated examples are included to illustrate that the new algorithm works well on simple simulated examples but can fail when applied in more realistic situations.
  • No references.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article