LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kirkham, Steven; Hamley, Ian W.; Smith, Andrew M.; Gouveia, Ricardo M.; Connon, Che J.; Reza, Mehedi; Ruokolainen, Janne (2016)
Publisher: Elsevier
Languages: English
Types: Article
Subjects: 218 Environmental engineering, DELIVERY, Biotechnology, PEPTIDE, Surfaces and Interfaces, 114 Physical sciences, Peptides, SUPRAMOLECULAR HYDROGELS, Self-assembly, DERIVATIVES, Physical and Theoretical Chemistry, 221 Nanotechnology, NANOPARTICLES, Fluorescence, 214 Mechanical engineering, Colloid and Surface Chemistry, NANOFIBERS/HYDROGELS, Peptide conjugates, ENZYMATIC FORMATION, SMALL MOLECULES, CYTOTOXICITY, ENHANCE
Derivatives of fluorophore FITC (fluorescein isothiocyanate) are widely used in bioassays to label proteins and cells. An N-terminal leucine dipeptide is attached to FITC, and we show that this simple conjugate molecule is cytocompatible and is uptaken by cells (human dermal and corneal fibroblasts) in contrast to FITC itself. Co-localisation shows that FITC-LL segregates in pen-nuclear and intracellular vesicle regions. Above a critical aggregation concentration, the conjugate is shown to self-assemble into beta-sheet nanostructures comprising molecular bilayers. (C) 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.orgflicenses/by/4.0/). Peer reviewed
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • [1] Y. Zhang, H. Gu, Z. Yang, B. Xu, Supramolecular hydrogels respond to ligand-receptor interaction, J. Am. Chem. Soc. 125 (2003) 13680-13681.
    • [2] M. Reches, E. Gazit, Controlled patterning of aligned self-assembled peptide nanotubes, Nat. Nanotechnol. 1 (2006) 195-200.
    • [3] Z. Yang, G. Liang, B. Xu, Enzymatic hydrogelation of small molecules, Acc. Chem. Res. 41 (2008) 315-326.
    • [4] A.M. Smith, R.J. Williams, C. Tang, P. Coppo, R.F. Collins, M.L. Turner, A. Saiani, R.V. Ulijn, Fmoc-diphenylalanine self assembles to a hydrogel via a novel architecture based on - interlocked -sheets, Adv. Mater. 20 (2008) 37-41.
    • [5] D.M. Ryan, S.B. Anderson, B.L. Nilsson, The influence of side-chain halogenation on the self-assembly and hydrogelation of Fmoc-phenylalanine derivatives, Soft Matter 6 (2010) 3220-3231.
    • [6] G. Cheng, V. Castelletto, C.M. Moulton, G.E. Newby, I.W. Hamley, Hydrogelation and self-assembly of Fmoc-tripeptides: unexpected influence of sequence on self-assembled fibril structure, and hydrogel modulus and anisotropy, Langmuir 26 (2010) 4990-4998.
    • [7] D.J. Adams, Dipeptide and tripeptide conjugates as low-molecular-weight hydrogelators, Macromol. Biosci. 11 (2011) 160-173.
    • [8] G. Cheng, V. Castelletto, R. Jones, C.J. Connon, I.W. Hamley, Hydrogelation of self-assembling RGD-based peptides, Soft Matter 7 (2011) 1326-1333.
    • [9] V. Castelletto, C.M. Moulton, G. Cheng, I.W. Hamley, M.R. Hicks, A. Rodger, D.E. López-Pérez, G. Revilla-López, C. Alemán, Self-assembly of Fmoc-tetrapeptides based on the RGDS cell adhesion motif, Soft Matter 1140 (2011) 5-15.
    • [10] B. Adhikari, G. Palui, A. Banerjee, Self-assembling tripeptide based hydrogels and their use in removal of dyes from waste-water, Soft Matter 5 (2009) 3452-3460.
    • [11] S. Yuran, Y. Razvag, M. Reches, Coassembly of aromatic dipeptides into biomolecular necklaces, ACS Nano 6 (2012) 9559-9566.
    • [12] L. Chen, K. Morris, A. Laybourn, D. Elias, M.R. Hicks, A. Rodger, L. Serpell, D.J. Adams, Self-assembly mechanism for a naphthalene-dipeptide leading to hydrogelation, Langmuir 2010 (2009) 5232-5242.
    • [13] J. Zhou, X. Du, Y. Gao, J. Shi, B. Xu, Aromatic-aromatic interactions enhance interfiber contacts for enzymatic formation of a spontaneously aligned supramolecular hydrogel, J. Am. Chem. Soc. 136 (2014) 2970-2973.
    • [14] Y. Kuang, Y. Gao, J. Shi, J. Li, B. Xu, The first supramolecular peptidic hydrogelator containing taurine, Chem. Commun. 50 (2014) 2772-2774.
    • [15] M.L. Ma, Y. Kuang, Y. Gao, Y. Zhang, P. Gao, B. Xu, Aromatic-aromatic interactions induce the self-assembly of pentapeptidic derivatives in water to form nanofibers and supramolecular hydrogels, J. Am. Chem. Soc. 132 (2010) 2719-2728.
    • [16] B. Adhikari, J. Nanda, A. Banerjee, Pyrene-containing peptide-based fluorescent organogels: inclusion of graphene into the organogel, Chem. Eur. J. 17 (2011) 11488-11496.
    • [17] S. Fleming, S. Debnath, P.W.J.M. Frederix, N.T. Hunt, R.V. Ulijn, Insights into the coassembly of hydrogelators and surfactants based on aromatic peptide amphiphiles, Biomacromolecules 15 (2014) 1171-1184.
    • [18] J. Li, Y. Kuang, Y. Gao, X. Du, J. Shi, B. Xu, D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID), J. Am. Chem. Soc. 135 (2012) 542-545.
    • [19] Y. Gao, Y. Kuang, X. Du, J. Zhou, P. Chandran, F. Horkay, B. Xu, Imaging self-assembly dependent spatial distribution of small molecules in a cellular environment, Langmuir 29 (2013) 15191-15200.
    • [20] J.Y. Li, Y. Kuang, Y. Gao, X.W. Du, J.F. Shi, B. Xu, D-amino acids boost the selectivity and confer supramolecular hydrogels of a nonsteroidal anti-inflammatory drug (NSAID), J. Am. Chem. Soc. 135 (2013) 542-545.
    • [21] J. Li, Y. Kuang, J. Shi, Y. Gao, J. Zhou, B. Xu, The conjugation of nonsteroidal antiinflammatory drugs (NSAID) to small peptides for generating multifunctional supramolecular nanofibers/hydrogels, Beilstein J. Org. Chem. 9 (2013) 908-917.
    • [22] J.Y. Li, Y. Gao, Y. Kuang, J.F. Shi, X.W. Du, J. Zhou, H.M. Wang, Z.M. Yang, B. Xu, Dephosphorylation of D-peptide derivatives to form biofunctional, supramolecular nanofibers/hydrogels and their potential applications for intracellular imaging and intratumoral chemotherapy, J. Am. Chem. Soc. 135 (2013) 9907-9914.
    • [23] F. Zhao, M.L. Ma, B. Xu, Molecular hydrogels of therapeutic agents, Chem. Soc. Rev. 38 (2009) 883-891.
    • [24] Z. Yang, H. Gu, D. Fu, P. Gao, J.K.W. Lam, B. Xu, Enzymatic formation of supramolecular hydrogels, Adv. Mater. 16 (2004) 1440-1444.
    • [25] V. Jayawarna, M. Ali, T.A. Jowitt, A.F. Miller, A. Saiani, J.E. Gough, R.V. Ulijn, Nanostructured hydrogels for three-dimensional cell culture through selfassembly of fluorenylmethoxycarbonyl-dipeptides, Adv. Mater. 18 (2006) 611-614.
    • [26] M. Zhou, A.M. Smith, A.K. Das, N.W. Hodson, R.F. Collins, R.V. Ulijn, J.E. Gough, Self-assembled peptide-based hydrogels as scaffolds for anchorage-dependent cells, Biomaterials 30 (2009) 2523-2530.
    • [27] D.J. Adams, P.D. Topham, Peptide conjugate hydrogelators, Soft Matter 6 (2010) 3707-3721.
    • [28] K. Montrose, Y. Yang, X.Y. Sun, S. Wiles, G.W. Krissansen, Xentry, a new class of cell-penetrating peptide uniquely equipped for delivery of drugs, Sci. Rep. 3 (2013).
    • [29] R.P. Haugland, The Handbook - A Guide to Fluorescent Probes and Labeling Technologies, Molecular Probes, Eugene, Oregon, 2005.
    • [30] B.N.G. Giepmans, S.R. Adams, M.H. Ellisman, R.Y. Tsien, Review - the fluorescent toolbox for assessing protein location and function, Science 312 (2006) 217-224.
    • [31] P. Zhang, A.G. Cheetham, L.L. Lock, H. Cui, Cellular uptake and cytotoxicity of drug-peptide conjugates regulated by conjugation site, Bioconj. Chem. 24 (2013) 604-613.
    • [32] P. Zhang, L.L. Lock, A.G. Cheetham, H. Cui, Enhanced cellular entry and efficacy of Tat conjugates by tational design of the auxillary segment, Mol. Pharm. 11 (2014) 964-973.
    • [33] H. Choi, S.R. Choi, R. Zhou, H.F. Kung, I.W. Chen, Iron oxide nanoparticles as magnetic resonance contrast agent for tumor imaging via folate receptor-targeted delivery, Acad. Radiol. 11 (2004) 996-1004.
    • [34] C.W. Lu, Y. Hung, J.K. Hsiao, M. Yao, T.H. Chung, Y.S. Lin, S.H. Wu, S.C. Hsu, H.M. Liu, C.Y. Mou, C.S. Yang, D.M. Huang, Y.C. Chen, Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling, Nano Lett. 7 (2007) 149-154.
    • [35] M. Huang, E. Khor, L.Y. Lim, Uptake and cytotoxicity of chitosan molecules and nanoparticles: effects of molecular weight and degree of deacetylation, Pharm. Res. 21 (2004) 344-353.
    • [36] C.B. He, Y.P. Hu, L.C. Yin, C. Tang, C.H. Yin, Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles, Biomaterials 31 (2010) 3657-3666.
    • [37] N. Murthy, J. Campbell, N. Fausto, A.S. Hoffman, P.S. Stayton, Design and synthesis of pH-responsive polymeric carriers that target uptake and enhance the intracellular delivery of oligonucleotides, J. Control. Release 89 (2003) 365-374.
    • [38] O. Aronov, A.T. Horowitz, A. Gabizon, D. Gibson, Folate-targeted PEG as a potential carrier for carboplatin analogs. Synthesis and in vitro studies, Bioconj. Chem. 14 (2003) 563-574.
    • [39] S.S. Twining, Fluorescein-isothiocyanate casein assay for proteolytic enzymes, Anal. Biochem. 143 (1984) 30-34.
    • [40] S. Izumi, Y. Urano, T. Hanaoka, T. Terai, T. Nagano, A simple and effective strategy to increase the sensitivity of fluorescence probes in living cells, J. Am. Chem. Soc. 131 (2009) 10189-10200.
    • [41] B. Stuart, Biological Applications of Infrared Spectroscopy, Wiley, Chichester, 1997.
    • [42] I.W. Hamley, Peptide fibrillisation, Angew. Chem. 46 (2007) 8128-8147.
    • [43] C. Toniolo, F. Formaggio, R.W. Woody, Electronic circular dichroism of peptides, in: N. Berova, P.L. Polavarapu, K. Nakanishi, R.W. Woody (Eds.), Comprehensive Chirooptical Spectroscopy, vol. 2, 2012, New York.
    • [44] J.R. Lakowicz, Principles of Fluorescence Spectroscopy, Kluwer, New York, 1999.
    • [45] http://www.fluorophores.tugraz.at/substance/252, 2015.
    • [46] V. Castelletto, G. Cheng, C. Stain, C.J. Connon, I.W. Hamley, Self-assembly of a peptide amphiphile containing l-carnosine and its mixtures with a multilamellar vesicle forming lipid, Langmuir 28 (2012) 11599-11608.
    • [47] I.W. Hamley, A. Dehsorkhi, V. Castelletto, Self-assembled arginine-coated peptide nanosheets in water, Chem. Commun. 49 (2013) 1850-1852.
    • [48] V. Castelletto, R.J. Gouveia, C.J. Connon, I.W. Hamley, New RGD-peptide amphiphile mixtures containing a negatively charged diluent, Faraday Discuss. 166 (2013) 381-397.
    • [49] http://kur.web.psi.ch/sans1/SANSSoft/sasfit.html, 2015.
    • [50] U. Fischer, J. Huber, W.C. Boelens, I.W. Mattaj, R. Luhrmann, The HIV-1 REV activation domain is a nuclear export signal that accesses an export pathway used by specific cellular RNAs, Cell 82 (1995) 475-483.
    • [51] W. Wen, J.L. Meinkoth, R.Y. Tsien, S.S. Taylor, Identification of a signal for rapid export of proteins from the nucleus, Cell 82 (1995) 463-473.
  • No related research data.
  • No similar publications.

Share - Bookmark

Funded by projects

Cite this article