LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Abualait, Turki S. Sabrah
Languages: English
Types: Unknown
Subjects:
The basal ganglia (BG) are a group of highly interconnected nuclei that are located deep at the base of the cerebral cortex. They participate in multiple neural circuits or 'loops' with cognitive and motor areas of the cerebral cortex. The basal ganglia has primarily been thought to be involved in motor control and learning, but more recently a number of brain imaging studies have shown that the basal ganglia are involved also in cognitive function. The aim of this work is to investigate the role of the basal ganglia in cognitive control and motor learning by examining its involvement in GO/WAIT and GO/NO-GO tasks, and Motor Prediction task, respectively. Ultra-high field (7 Tesla) fMRI is used to provide higher BOLD contrast and thus higher achievable spatial resolution. A dual echo gradient echo EPI method is used to obtain high quality images from both cortical and sub-cortical regions. A common neural basis across different forms of response inhibition using GO/WAIT and GO/NO-GO cognitive paradigms is observed in the experiments of Chapter 4, as well as distinct brain regions involved in withholding and cancelling of motor responses. Using the GO/WAIT cognitive paradigm in Chapter 5 individuals with Tourette syndrome (TS) are compared to age and gender-matched control healthy subjects (CS), and it is shown that TS subjects are unable to recruit critical cortical and sub-cortical nodes that are typically involved in mediating behavioural inhibition. Furthermore, in Chapter 6, the role of the basal ganglia in motor learning is investigated using the Motor Prediction task. The findings show that the basal ganglia and midbrain regions (i.e., habenula) are involved in motor prediction and enhancing the reinforcement learning process.\ud \ud This thesis aims to investigate the basal ganglia function in cognitive and motor tasks, and concludes with suggested further studies to advance our understanding of the role of the basal ganglia nuclei in cognitive function.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Mink, J. W. (1996). The basal ganglia: focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381-425.
    • Mink, J.W. (2001). Basal ganglia dysfunction in Tourette syndrome: a new hypothesis. Paediatric Neurology, 25, 190-198.
    • Mink, J. W. (2003). The basal ganglia and involuntary movements. Achieves o f Neurology, 60, 1365-1368.
    • Mishkin, M. (1964). Perseveration of central sets after frontal lesions in monkey. In J.M. Warren and K. Akert (Eds.), The frontal granular cortex and behaviour (pp. 219-241). New York, NY: McGraw-Hill.
    • Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A.H., Howerter, A., Wager, T. D., (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: a latent variable analysis. Cognitive Psychology, 41, 49-100.
    • Moll, G.H., Heinrich, H., Wischer, S., Tergau, F., Paulus, W., and Rothenberger, A. (1999). Motor system excitability in healthy children: developmental aspects from transcranial magnetic stimulation. Electroencephalography and Clinical Neurophysiology, 51, 243-249.
    • Monakow, K.H., Akert, K., and Kiinzle, H. (1978) Projections of the precentral motor cortex and other cortical areas of the frontal lobe to the subthalamic nucleus in the monkey. Experimental Brain Research, 33, 395-403.
    • Moriarty, J., Campos Costa, D., and Schmitz, B., Trimble, M. R., Ell, P. J., Robertson, M. M. (1995). Brain perfusion abnormalities in Gilles de la Tourette syndrome. The British Journal o f Psychiatry, 16, 249-254.
    • Moriarty, J., Varma, A. R., and Stevens, J., Fish, M., Trimble, M. R., and Robertson, M. M. (1997). A volumetric MRI study of Gilles de la Tourette syndrome. Neurology, 49, 410-415.
    • Morris, R. W., Vercammen, A., Lenroot, R., Moore, L., Langton, J. M., Short, B., Kulkarni, J., Curtis, J., O'Donnell, M., Weickert, C. S., and Weickert, T. W. (2012). Disambiguating ventral striatum fMRI-related bold signal during reward prediction in schizophrenia. Molecular Psychiatry, 17, 280-289
    • Mostofsky, S. H., Schafer, J. G., Abrams, M. T., Goldberg, M. C., Flower, A. A., Boyce, A., Courtney, S. M., Calhoun, V. D., Kraut, M. A., Denckla, M. B., and Pekar, J. J. (2003). fMRI evidence that the neural basis of response inhibition is task-dependent. Cognitive Brain Research, 17, 419-430.
    • Mostofsky, S. H. and Simmonds, D. J. (2008). Response inhibition and response selection: Two sides o f the same coin. Journal o f Cognitive Neuroscience, 20, 1- 11.
    • Mostofsky, S. H., Wendlandt, J., Cutting, L., Denckla, M. B, and Singer, H. S. (1999). Corpus callosum measurements in girls with Tourette syndrome. Neurology, 53, 1345-1347.
    • Mueller, S. C., Jackson, G. M., Dhalla, R., Datsopoulos, S., and Hollis, C. P. (2006). Enhanced cognitive control in young people with Tourette's syndrome. Current Biology, 16, 570-573.
    • Muller, N. G. and Knight, R. T. (2006). The functional neuroanatomy of working memory: contributions of human brain lesion studies. Neuroscience, 139, 51­ 58.
    • Nambu, A. (2005). A new approach to understand the pathophysiology of Parkinson's disease. Journal o f Neurology, 252, 1-4.
    • Nambu, A. (2008). Seven problems on the basal ganglia. Current Opinion in Neurobiology, 18, 595-604.
    • Nambu, A. (2009). Functions of direct, indirect and hyperdirect pathways. Brain Nerve, 61, 360-372.
    • Nambu, A. (2011). Somatotopic organization of the primate basal ganglia. Frontiers in Neuroanatomy, 5, 1-9.
    • Nambu, A., Kaneda, K., Tokuno, H., and Takada, M. (2000). Abnormal pallidal activity evoked by cortical stimulation in the parkinsonian monkey. Societyfor Neuroscience Abstract, 26, 960.
    • Nambu, A., Kaneda, K., Tokuno, H., and Takada, M. (2002). Organization of corticostriatal motor inputs in monkey putamen. Journal o f Neurophysiology, 88, 1830-1842.
    • Nambu, A., Shigemi Mori, D. G. S., and Mario, W. (2004). A new dynamic model of the cortico-basal ganglia loop. Progress in Brain Research, 143, 461-466.
    • Nambu, A., Takada, M., Inase, M., and Tokuno, H. (1996). Dual somatotopical representations in the primate subthalamic nucleus: evidence for ordered but reversed body-map transformations from the primary motor cortex and the supplementary motor area. Journal o f Neuroscience, 16, 2671-2683.
    • Neubert, F., Mars, R. B., Buch, E. R., Olivier, E., and Rushworth, M. F. (2010). Cortical and sub-cortical interactions during action reprogramming and their related white matter pathways. Proceedings o f the National Academy o f Sciences o f the United States o fAmerica, 107, 13240-13245.
    • Neuner, I., Kupriyanova, Y., Stocker, T., Fluang, R., Posnansky, O., Schneider, F., and Shah, N. J. (2011). Microstructure assessment of grey matter nuclei in adult Tourette patients by diffusion tensor imaging. Neuroscience Letters, 487, 22-26.
    • Nichols, T., Brett, M., Andersson, J., Wager, T., and Poline, J. P. (2005). Valid conjunction inference with the minimum statistic. Neuroimage, 25, 653-660.
    • Nieuwenhuis, S., Yeung, N., Van den Wildenberg, W., and Ridderinkhof, K. R. (2003). Electrophysiological correlates of anterior cingulate function in a go/no-go task: Effects of response conflict and trial type frequency. Cognitive, Affective, and Behavioural Neuroscience, 3, 17-26.
    • Nigg, J. (2000). On inhibition/disinhibition in developmental psychopathology: views from cognitive and personality psychology and a working inhibition taxonomy. Psychological Bulletin, 126, 220-246.
    • Nigg, J. T. (2001). Is ADHD a Disinhibitory Disorder? Psychological Bulletin, 127, 571-598.
    • Nigg, J. T. (2005). Neuropsychologic theory and findings in attention-deficit/ hyperactivity disorder: The state of the field and salient challenges for the coming decade. Biological Psychiatry, 57, 1424-1435.
    • Nigg, J. T., Stavro, G., Ettenhofer, M., Hambrick, D. Z., Miller, T., and Henderson, J. M. (2005). Executive functions and ADHD in adults: Evidence for selective effects on ADHD symptom domains. Journal o f Abnormal Psychology, 114, 706-717.
    • Obeso, J. A., Marin C., Rodriguez-Oroz, C., Blesa, J., Benitez-Temino, B., MenaSegovia, J., Rodriguez, M., and Olanow, C. W. (2008). The basal ganglia in Parkinson's disease: current concepts and unexplained observations. Annals o f Neurology, 64, 30-46.
    • O'Doherty, J.P., Buchanan, T. W., Seymour, B., and Dolan, R. J. (2006). Predictive neural coding of reward preference involves dissociable responses in human ventral midbrain and ventral striatum. Neuron, 49, 157-166.
    • O'Doherty, J. P., Dayan, P., Friston, K., Critchley, H., and Dolan, R. J. (2003). Temporal difference models and reward-related learning in the human brain. Neuron, 38, 329-337.
    • O'Doherty, J. P., Dayan, P., Schultz, J., Deichmann, R., Friston, K., and Dolan, R. J. (2004). Dissociable roles of ventral and dorsal striatum in instrumental conditioning. Science, 304, 452-454.
    • O'Doherty, J. P., Deichmann, R., Critchley, H. D., and Dolan, R. J. (2002). Neural responses during anticipation of a primary taste reward. Neuron, 33, 815-826.
    • Ogawa, S., Lee, T. M., Kay, A. R., and Tank, D. W. (1990a). Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings o f the National Academy o f Sciences o f the United States o f America, 87, 9868-9872.
    • Ogawa, S., Lee, T. M., Nayak, A. S. and Glynn, P. (1990b). Oxygenation-sensitive contrast in magnetic resonance imaging of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14, 68-78.
    • Ogawa, S., Tank, D. W., Menon, R., Ellermann, J. M., Kim, S.-G., Merkle, H. and Ugurbil, K. (1992). Intrinsic signal changes accompanying sensory stimulation: Functional brain mapping with magnetic resonance imaging. Proceedings o f the National Academy o f Sciences o f the United States o f America, 89, 5951-5955.
    • Olman, C., Ronen, I., Ugurbil, K., and Kim, D. S. (2003). Retinotopic mapping in cat visual cortex using high-field functional magnetic resonance imaging. Journal o f Neuroscience Methods, 131, 161-170.
    • Orth, M., Munchau, A., and Rothwell, J. C. (2008). Corticospinal system excitability at rest is associated with tic severity in Tourette syndrome. Biological Psychiatry, 64, 248-251.
    • Orth, M. and Rothwell, J. C. (2009). Motor cortex excitability and comorbidity in Gilles de la Tourette syndrome. Journal o f Neurology Neurosurgery and Psychiatry, 80, 29-34.
    • Owen, A. M., Doyon, J., Petrides, M., and Evans, A. C. (1996). Planning and spatial working memory: a positron emission tomography study in humans. European Journal o fNeuroscience, 8, 353-364.
    • Owen, A. M., Doyon, J., Dagher, A., Sadikot, A., and Evans, A. C., (1998). Abnormal basal ganglia outflow in Parkinson's disease identified with PET. Implications for higher cortical functions. Brain, 121, 949-965.
    • Packard, M. G. and Knowlton, B. J. (2002). Learning and memory functions of the basal ganglia. Annual Review o f Neuroscience, 25, 563-593.
    • Padmala, S. and Pessoa, L. (2010). Interactions between cognition and motivation during response inhibition. Neuropsychologia, 48, 558-565.
    • Pagnoni, G., Zink, C. F., Montague, P. R., and Bems, G. S. (2002). Activity in human ventral striatum locked to errors of reward prediction. Nature Neuroscience, 5, 97-98.
    • Parent, A. and De Bellefeuille, L. (1982). Organization o f efferent projections from the internal segment of globus pallidus in primate as revealed by fluorescence retrograde labelling method. Brain Research, 245, 201-213.
    • Parent, A. and Hazrati, L. N. (1993). Anatomical aspects of information processing in primate basal ganglia. Trends in Neuroscience, id, 111-116
    • Parthasarathy, H. B., Schall, J. D., and Graybiel, A. M. (1992). Distributed but convergent ordering o f corticostriatal projections: Analysis of the frontal eye field and the supplementary eye field in the macaque monkey. Journal o f Neuroscience, 12, 4468-4488.
    • Pastor, M. A., Artieda, J., Jahanshahi, M., Obeso, J. A. (1992). Time estimation and reproduction is abnormal in Parkinson's disease. Brain, 115, 211-225.
    • Pasupathy, A. and Miller, E. K. (2005). Different time courses of learning-related activity in the prefrontal cortex and striatum. Nature, 433, 873-876.
    • Paulus, M. P., Hozack, N., Frank, L., and Brown, G. C. (2002). Error rate and outcome predictability affect neural activation in prefrontal cortex and anterior cingulate during decision-making. Neuroimage, 15, 836-846.
    • Paus, T. (2001). Primate anterior cingulate cortex, where motor control, drive and cognition interface. Nature Reviews Neuroscience, 2, 417-424.
    • Paus, T., Petrides, M., Evans, C., and Meyer, E. (1993). Role of the human anterior cingulate cortex in the control of oculomotor, manual, and speech responses: a positron emission tomography study. Journal o f Neurophysiology, 70, 453­ 469.
    • Penadés, R., Catalán, R., Rubia, K., Andrés, S., Salamero, M., and Gastó, C. (2006). Impaired response inhibition in obsessive compulsive disorder. European Psychiatry, 22, 404-410.
    • Penney, J. B. and Young, A. B. (1981). GABA as the pallidothalamic neurotransmitter:Implicationsfor basal ganglia function. Brain Research, 207, 195-199.
    • Peters, A. M., Brookes, M. J., Hoogenraad, F.G., Gowland, P. A., Francis, S. T., Morris, P. G., and Bowtell, R. (2007). T2* measurements in human brain at I. 5, 3 and 7 T. Magnetic Resonance Imaging, 25, 748-753.
    • Peterson, B., Leckman, J. F., Duncan, J. S., Wetzles, R., Riddle, M. A., Hardin, M. T., and Cohen, D. J. (1994). Corpus callosum morphology from magnetic resonance images inTourette syndrome. Psychiatry Research, 55, 85-89.
    • Peterson, B. S., Pine, D. S., Cohen, P., and Brook, J. S. (2001). Prospective, longitudinal study of tic, obsessive-compulsive, and attentiondeficit/hyperactivity disorders in an epidemiological sample. Journal o f the American Academy o f Child and Adolescent Psychiatry, 40, 685-695.
    • Peterson, B., Riddle, M. A., Cohen, D. J., Katz, L. D., Smith, J. C., Hardin, M. T., Leckman, J. F. (1993). Reduced basal ganglia volumes in Tourette syndrome using three-dimensional reconstruction techniques from magnetic resonance images. Neurology, 43, 941-949.
    • Peterson, B. S., Skudlarski, P., Anderson, A. W., Zhang, H., Gatenby, J. C., Lacadie, C. M., Leckman, J. F., and Gore, J. C. (1998). A functional magnetic resonance imaging study of tic suppression in Tourette syndrome. Archives o f General Psychiatry, 55, 326-333.
    • Peterson, B.S., Skudlarski, P., Gatenby, J. C., Zhang, H., Anderson, A. W., and Gore, J. C. (1999). Multiple distributed attentional systems. Biological Psychiatry, 45, 1237-258.
    • Peterson, B. S., Thomas, P., Kane, M. J., Scahill, L., Zhang, H., and Bronen, R. King, R. A., Leckman, J. F., Staib, L. (2003). Basal Ganglia volumes inpatients with Gilles de la Tourette syndrome. Archives o f General Psychiatry, 60, 415-424.
    • Petrides, M. (2000). The role of the mid-dorsolateral prefrontal cortex in working memory. Experimental Brain Research, 133, 44-54.
    • Pizzagalli, D. A. (2007). Electroencephalography and high-density electrophysiological source localization, In J.T. Cacioppo, L.G. Tassinary, G.G. Bemtson, (Eds.), Handbook o f Psychophysiology (pp. 56-84). Cambridge: Cambridge University Press.
    • Plassmann, H., O'Doherty, J., and Rangel, A. (2007). Orbitofrontal cortex encodes willingness to pay in everyday economic transactions. Journal o f Neuroscience, 27, 9984-9988.
    • Plessen, K. J., Wentzel-Larsen, T., Fhigdahl, K., Feineigle, P., Klein, J., Staib, L. H., Leckman, J. F., Bansal, R, and Peterson, B. S. (2004). Altered interhemispheric connectivity in individuals with Tourette's disorder. American Journal o f Psychiatry, 161, 2028-2037.
    • Poldrack, R. A. (2006). Can cognitive processes be inferred from neuroimaging data? Trends in Cognitive Science, 10, 59-63.
    • Poldrack, R. A., Clark, J., Pare-Blagoev, E. J., Shohamy, D., Creso Moyano, J., Myers, C., and Gluck, M. A. (2001). Interactive memory systems in the human brain. Nature, 414, 546-550.
    • Poldrack, R. A., Fletcher, P. C., Henson, R. N., Worsley, K. J., Brett, M., and Nichols T. E. (2008). Guidelines for reporting an fMRI study. Neuroimage, 2, 409­ 414.
    • Poldrack, R. A., Prabhakaran, V., Seger, C. A., and Gabrieli, J. D. E. (1999). Striatal activation during cognitive skill learning. Neuropsychology, 13, 564-574.
    • Poline, J. B., Kherif, F., and Penny, W. D. (2007). Contrasts and Classical Inference. In, R. S. Frackowiak, K.J. Friston, C.D. Frith, R.J. Dolan, C.J. Price, S. Zeki, J. Ashburner, and W.D. Penny (Eds.), Human Brain Function (pp. 126-140). San Diego, CA: Elsevier Academic Press.
    • Poole, M. and Bowtell, R. (2008). Volume parcellation for improved dynamic shimming. Magnetic Resonance Materials in Physics, Biology and Medicine, 21, 31-40.
    • Poser, B.A., Versluis, M.J., Hoogduin, J.M., and Norris, D.G. (2006). BOLD contrast sensitivity enhancement and artifact reduction with multiecho EPI: parallelacquired inhomogeneity-desensitized fMRI. Magnetic Resonance in Medicine, 55, 1227-1235.
    • Posner, M. I. and Dehaene, S. (1994). Attentional networks. Trends in Neuroscience, 17, 75-79.
    • Posner, M. and DiGirolamo, G. (1998). Executive attention: conflict, target detection, and cognitive control. In R. Parasuraman, (Ed.), The Attentive Brain (pp. 401­ 423). Cambridge, MA: MIT Press.
    • Posse, S., Fitzgerald, D., Gao, K. X., Habel, U., Rosenberg, D., Moore, G. J., and Schneider, F. (2003). Real-time fMRI o f temporolimbic regions detects amygdala activation during single-trial self-induced sadness. Neuroimage, 18, 760-768.
    • Posse, S., Wiese, S., Gembris, D., Mathiak, K., Kessler, C., Grosse-Ruyken, M.L., Elghahwagi, B., Richards, T., Dager, S.R., and Kiselev, V.G. (1999). Enhancement of BOLD-contrast sensitivity by single-shot multi-echo functional MR imaging. Magnetic Resonance in Medicine, 42, 87-97.
    • Rao, S. M., Bobholz, J. A., Flammeke, T. A., Rosen, A. C., Woodley, S. J., Cunningham, J. M., Cox, R. W., Stein, E. A., and Binder, J. R. (1997). Functional MRI evidence for sub-cortical participation in conceptual reasoning skills. Neuroreport, 8, 1987-1993.
    • Rao, S. M., Mayer, A. R., Harrington, D. L. (2001). The evolution of brain activation during temporal processing. Nature Neuroscience, 4, 317-323.
    • Richards, J. E. (2003). The development of visual attention and the brain. In M. de Haan, M.H. Johnson (Eds.), The cognitive neuroscience o f development (pp. 73-98). Hove: Psychology Press.
    • Ridderinkhof, K. R., Scheres, A., Oosterlaan, J., and Sergeant, J. A. (2005). Delta plots in the study of individual differences: New tools reveal response inhibition deficits in AD/HD that are eliminated by methylphenidate treatment. Journal o fAbnormal Psychology, 114, 197-215.
    • Ridderinkhof, K. R., Ullsperger, M., Crone, E. A., and Nieuwenhuis, S. (2004). The role of the medial frontal cortex in cognitive control. Science, 306, 443-447.
    • Riddle, M. A., Rasmusson, A. M., Woods, S. W. and Hoffer, P. B. (1992). SPECT imaging of cerebral blood flow in Tourette syndrome. Advances in Neurology, 58, 207-211.
    • Rieger, M., Gauggel, S., and Burmeister, K. (2003). Inhibition of ongoing responses following frontal, nonfrontal, and basal ganglia lesions. Neuropsychology, 17, 272-282.
    • Robbins, T. W. and Everitt, B. J. (1999). Motivation and reward. In M. J. Zigmond, F. E. Bloom, S. C. Landis, J. L. Roberts, and L. R. Squire (Eds.), Fundamental neuroscience (pp. 1245-1260). San Diego, CA: Elsevier Academic Press.
    • Rodriguez, P. F., Aron, A. R., and Poldrack, R. A. (2006). Ventral striatal/nucleus accumbens sensitivity to prediction errors during classification learning. Human Brain Mapping, 27, 306-313.
    • Roesch, M. R. and Olson, C. R. (2003). Impact of expected reward on neuronal activity in prefrontal cortex, frontal and supplementary eye fields and premotor cortex. Journal o f Neurophysiology*, 90, 1766-1789.
    • Roessner, V., Banaschewski, T., Fillmer-Otte, A., Becker, A., Albrecht, B., Sergeant, J., Tannock, R., Rothenberger, A. (2008). Color perception deficits in coexisting attention-deficit=hyperactivity disorder and chronic tic disorders. Journal o f Neural Transmission, 115, 235-239.
    • Roessner, V., Overlack, S., Schmidt-Samoa, C., Baudewig, J., Dechent, P., Rothenberger, A., and Helms, G. (2011). Increased putamen and callosal motor subregion in treatment-naïve boys with Tourette syndrome indicates changes in the bihemispheric motor network. The Journal o f Child Psychology and Psychiatry, 52, 306-314.
    • Rofé, Y. (2008). "Does Repression Exist? Memory, Pathogenic,Unconscious and Clinical Evidence". Review o f General Psychology, 12, 63-85.
    • Rogers, R. D., Andrews, T. C., and Grasby, P. M., Brooks, D. J. and Robbins, T. W. (2000). Contrasting cortical and sub-cortical activations produced by attentional-set shifting and reversal learning in humans. Journal o f Cognitive Neuroscience, 12, 142-162.
    • Rogers, R. D. and Monsell, S. (1995). Costs of a predictable switch between simple cognitive tasks. Journal o fExperimental Psychology: General, 124, 207-231.
    • Rogers, R. D., Owen, A. M., Middelton, H. C., Williams, E. J., Pickard, J. D., Sahakian, B. J., and Robbins, T. W. (1999). Choosing between small, likely rewards and large, unlikely rewards activates inferior and orbital prefrontal cortex. Journal o f Neuroscience, 20, 9029-9038.
    • Rolls, E. T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284­ 294.
    • Royall, D. R., Lauterbach, E. C., Cummings, J. L., Reeve, A., Rummans, T. A., and Käufer, D. I. LaFrance, W. C., and Coffey, C. E. (2002). Executive control function: A review of its promises and challenges for clinical research. Journal o f Neuropsychiatry and Clinical Neurosciences, 14, 377-405.
    • Rowe J. B. and Passingham, R. E. (2001). Working memory for location and time: Activity in prefrontal area 46 relates to selection rather than maintenance in memory. Neuroimage, 14, 77-86.
    • Rowe, J. B., Toni, I., Josephs, O., Frackowiak, R. S., and Passingham, R. E. (2000). The prefrontal cortex: Response selection or maintenance within working memory? Science, 288, 1656-1660.
    • Rubia, K. (2005). Studies of neuro-developmental psychiatric disorders using MRI. Psychiatry, 4, 6-10.
    • Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S., Simmons, A., Andrew, C., and Bullmore, E. (1998). Prefrontal involvement in “temporal bridging” and timing movement. Neuropsychologia, 36, 1283-1293.
    • Rubia, K., Overmeyer, S., Taylor, E., Brammer, M., Williams, S. C., Simmons, A., Andrew, C., and Bullmore, E.T. (1999). Hypofrontality in Attention Deficit Hyperactivity Disorder during higher order motor control: a study with fMRI. American Journal o f Psychiatry, 156, 891-896.
    • Rubia, K., Russell, T., Overmeyer, S., Brammer, M. J., Bullmore, E. T., Sharma, T., Simmons, A., Williams, S. C., Giampietro, V., Andrew, C. M., and Taylor, E. (2001). Mapping motor inhibition: conjunctive brain activations across different versions of go/no-go and stop tasks. Neuroimage, 13, 250-261.
    • Rubia, K., Smith, A. B., Brammer, M. J., and Taylor, E. (2003). Right inferior prefrontal cortex mediates response inhibition while mesial prefrontal cortex is responsible for error detection. Neuroimage, 20, 351-358.
    • Rushworth, M. F., Walton, M. E., Kennerley, S. W., and Bannerman, D. M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Science, 8, 410-417.
    • Sakagami, M., Tsutsui, K., Lauwereyns, J., Koizumi, M., Kobayashi, S., and Hikosaka, O. (2001). A code for behavioral inhibition on the basis of color, but not motion, in ventrolateral prefrontal cortex of macaque monkey. Journal of Neuroscience, 21, 4801-4808.
    • Saint-Cyr, J. A., Taylor, A. E., and Nicholson, K. (1995). Behaviour and the basal ganglia. Advances in Neurology, 65, 1-28.
    • Salas, R., Baldwin, P., de Biasi, M., and Montague, P. R. (2010). BOLD responses to negative reward prediction errors in human habenula. Frontiers in Human Neuroscience, 4, 1-7.
    • Scangos, K. W and Stuphom, V. (2010). Medial frontal cortex motivates but does not control movement initiation in the countermanding task. Journal o f Neuroscience, 30, 1968-1982.
    • Seger, C. A. and Cincotta, C. M. (2005). The roles of the caudate nucleus in human classification learning. Journal o f Neuroscience 25, 2941-51.
    • Selemon, L. D. and Goldman-Rakic, P. S. (1985). Longitudinal topography and interdigitation of cortico-striatal projections in the rhesus monkey. Journal o f Neuroscience, 5, 776-794.
    • Serrien, D. J., Nirkko, A. C., Loher, T. J., Ldvblad, K-O., Buirgunder, J-M., and Wiesendanger, M., (2002). Movement control of manipulative tasks in patients with Gilles de la Tourette syndrome. Brain, 125, 290-300.
    • Serrien, D. J., Orth, M., Evans, A. H., Lees, A. J., and Brown, P. (2005). Motor inhibition in patients with Gilles de la Tourette syndrome: Functional activation patterns as revealed by EEG coherence. Brain, 128, 116-125.
    • Sescousse, G., RedoutD, J., and Dreher, J. C. (2010). The architecture of reward value coding in the human orbitoffontal cortex. Journal o f Neuroscience, 30, 13095­ 13104.
    • Shohamy, D., Myers, C. E., Grossman, S., Sage, J., Gluck, M. A., Poldrack, R. A. (2004). Cortico-striatal contributions to feedback-based learning: converging data from neuroimaging and neuropsychology. Brain, 127, 851-859.
    • Sharp, D. J, Bonnelle, V., De Boissezon, X., Beckmann, C. F., James, S. G., Patel, M. C., and Mehta, M. A. (2010). Distinct frontal systems for response inhibition, attentional capture, and error processing. Proceeding o f the National Academy o f Sciences o f the United States o fAmerica, 107, 6106-6111.
    • Sowell, E. R., Kan, E., Yoshii, J., Thompson, P. M., Bansal, R., Xu, D., Toga, A. W., and Peterson, B. S. (2008). Thinning of sensorimotor cortices in children with Tourette syndromq. Nature Neuroscience, 11, 637-639.
    • Simmonds, D. J., Pekar, J. J., and Mostofsky, S. H. (2008). Meta-analysis of Go/Nogo tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46, 224-232.
    • Singer, H. S., Harris, K. (2006). Circuits to synapses: The pathophysiology of Tourette syndrome. In S. Gilman (Ed.), Neurobiology o f disease. Burlington, MA: Elsevier Academic Press.
    • Singer, H. S. and Minzer, K. (2003). Neurobiology of Tourette syndrome: concepts of neuroanatomical localization and neurochemical abnormalities. Brain and Development, 25, 70-84.
    • Singer, H. S., Reiss, A. L., Brown, J. E., Aylward, E. H., Shih, B., Chee, E., Harris, E. L. , Reader, M. J., Chase, G. A., Bryan, R. N., and Denckla, M. B. (1993). Volumetric MRI changes in basal ganglia of children with Tourette syndrome. Neurology, 43, 950-956.
    • Smith, D. V., Hayden, B. Y., Truong, T. K., Song, A. W., Platt, M. L., and Huettel, S. A. (2010). Distinct value signals in anterior and posterior ventromedial prefrontal cortex. Journal o f Neuroscience, 30, 2490-2495.
    • Smith, E. E. and Jonides, J. (1999). Storage and executive processes in the frontal lobes. Science, 283, 1657-1661.
    • Smith, R. (1992). Inhibition: history and meaning in the sciences o f mind and brain. Berkeley, CA: University of California Press.
    • Smith, S., Bannister, P., Beckmann, C., Brady, M , Clare, S., Flitney, D., Hansen, P., Jenkinson, M., Leibovici, D., Ripley, B., Woolrich, M., and Zhang, Y. (2001). FSL: New tools for functional and structural brain image analysis. In Seventh International Conference on Functional Mapping o f the Human Brain.
    • Spoormaker, V. I., Andrade, K. C., Schröter, M. S., Sturm, A., Goya-Maldonado, R., Sämann, P. G., and Czisch, M. (2011). The neural correlates of negative prediction error signalling in human fear conditioning. Neuroimage, 54, 2250­ 2256.
    • Stem, E., Silbersweig, D. A., Chee, K-Y., Holmes, A., Robertson, M. M., Trimble, M. , Frith, C. D., Frackowiak, R. S., and Dolan, R. J. (2000). A functional neuroanatomy of tics in Tourette syndrome. Archives o f General Psychiatry, 57, 741-748.
    • Waelti, P., Dickinson, A., and Schultz, W. (2001). Dopamine responses comply with basic assumptions of formal learning theory. Nature, 412, 43-48.
    • Wager, T. D., Sylvester, C. Y., Lacey, S. C., Nee, D. E., Franklin, M., and Jonides, J. (2005). Common and unique components of response inhibition revealed by fMRI. Neuroimage, 27, 323-340.
    • Wichmann, T. and DeLong, M. R. (1996). Functional and pathophysiological models of the basal ganglia. Current Opinion in Neurobiology, 241, 981-983
    • Wickens, J. R. and Kotter, R. (1995). Cellular models of reinforcement. In J.C. Houk, J.L Davis, and D.G. Beiser, (Eds.), Models o f information processing in the Basal Ganglia (pp. 187-214). Cambridge, MA: MIT Press.
    • Wickens, J. R., Begg, A. J., and Arbuthnott, G. W. (1996). Dopamine reverses the depression of rat corticostriatal synapses which normally follows highfrequency stimulation of cortex in vitro. Neuroscience, 70, 1-5.
    • Zandbelt, B. B. and Vink, M. (2010). On the role of the striatum in response inhibition. Public Library o f Science One, 5, el 3848.
    • Zheng, D., Oka, T., Bokura, H., and Yamaguchi, S. (2008). The key locus of common response inhibition network for no-go and stop signals. Journal o f Cognitive Neuroscience, 20, 1434-1442.
    • Ziemann, U., Paulus, W., and Rothenberger, A. (1997). Decreased motor inhibition in Tourette disorder: evidence from transcranial magnetic stimulation. The American Journal o f Psychiatry 154, 1277-1284.
    • Zimmerman, A. M., Abrams, M. T., Giuliano, J. D., Denckla, M. B., and Singer, H. S. (2000). Sub-cortical volumes in girls with Tourette syndrome: support for a gender effect. Neurology, 54, 2224-2229.
  • Inferred research data

    The results below are discovered through our pilot algorithms. Let us know how we are doing!

    Title Trust
    58
    58%
  • No similar publications.

Share - Bookmark

Cite this article