LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Kumar, P.; Nakariakov, V. M.; Cho, K.-S. (2016)
Publisher: IOP Publishing
Languages: English
Types: Article
Subjects: QB
We present multi-wavelength analysis of a quasi-periodic pulsation (QPP) observed in the hard Xray, radio, and extreme-ultraviolet (EUV) channels during an M1.9 flare occurred on 23–24 September 2011. The non-thermal hard X-ray emission in 25-50 keV observed by RHESSI shows five distinct impulsive peaks of decaying amplitude with a period of about three minutes. Similar QPP was observed in the microwave emission recorded by the Nobeyama Radioheliograph and Polarimeter in the 8.8, 15, 17 GHz channels. Interestingly, the 3-min QPP was also observed in the metric and decimetric radio frequencies (25–180, 245, 610 MHz) as repetitive type III bursts. Multi-wavelength observations from the SDO/AIA, Hinode/SOT, and STEREO/SECCHI suggest a fan-spine topology at the eruption site, associated with the formation of a quasi-circular ribbon during the flare. A small filament was observed below the fan-loops before the flare onset. The filament rose slowly and interacted with the ambient field. This behaviour was followed by an untwisting motion of the filament. Two different structures of the filament showed ∼3-min periodic alternate rotation in the clockwise and counterclockwise directions. The 3-min QPP was found to highly correlate with 3-min oscillations in a nearby sunspot. We suggest that the periodic reconnection (modulated either by sunspot slow-mode wave or by untwisting filament) at a magnetic null-point most likely causes the repetitive particle acceleration, generating the QPP observed in hard X-ray, microwave and type III radio bursts.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • Anfinogentov, S., Nakariakov, V. M., Mathioudakis, M., Van Doorsselaere, T., & Kowalski, A. F. 2013, ApJ, 773, 156
    • Asai, A., Kiyohara, J., Takasaki, H., Narukage, N., Yokoyama, T., Masuda, S., Shimojo, M., & Nakajima, H. 2013, ApJ, 763, 87
    • Aschwanden, M. J. 2004, Physics of the Solar Corona. An Introduction (Praxis Publishing Ltd)
    • Aschwanden, M. J., & Benz, A. O. 1997, ApJ, 480, 825
    • Balona, L. A., Broomhall, A.-M., Kosovichev, A., Nakariakov, V. M., Pugh, C. E., & Van Doorsselaere, T. 2015, MNRAS, 450, 956
    • B´arta, M., Karlicky´, M., Vrˇsnak, B., & Goossens, M. 2007, Central European Astrophysical Bulletin, 31, 165
    • B´arta, M., Vrˇsnak, B., & Karlicky´, M. 2008, A&A, 477, 649
    • Bastian, T. S., Benz, A. O., & Gary, D. E. 1998, ARA&A, 36, 131
    • Botha, G. J. J., Arber, T. D., Nakariakov, V. M., & Zhugzhda, Y. D. 2011, ApJ, 728, 84
    • Brueckner, G. E., et al. 1995, Sol. Phys., 162, 357
    • Chen, P. F., & Priest, E. R. 2006, Sol. Phys., 238, 313
    • Cheung, M. C. M., et al. 2015, ApJ, 801, 83
    • de Moortel, I. 2009, Space Sci. Rev., 149, 65
    • De Moortel, I., & Nakariakov, V. M. 2012, Royal Society of London Philosophical Transactions Series A, 370, 3193
    • Doyle, J. G., Popescu, M. D., & Taroyan, Y. 2006, A&A, 446, 327
    • Fan, Y. 2009, ApJ, 697, 1529
    • F´arn´ık, F., Karlicky´, M., & Sˇvestka, Z. 2003, Sol. Phys., 218, 183
    • Fletcher, L., & Hudson, H. S. 2008, ApJ, 675, 1645
    • Golub, L., et al. 2007, Sol. Phys., 243, 63
    • Gosling, J. T., Teh, W.-L., & Eriksson, S. 2010, ApJ, 719, L36
    • Horne, J. H., & Baliunas, S. L. 1986, ApJ, 302, 757
    • Howard, R. A., et al. 2008, Space Sci. Rev., 136, 67
    • Hudson, H. S. 2000, ApJ, 531, L75
    • Hurford, G. J., et al. 2002, Sol. Phys., 210, 61
    • Kai, K. 1986, Sol. Phys., 104, 235
    • Karlicky´, M., B´arta, M., & Ryba´k, J. 2010, A&A, 514, A28
    • Kliem, B., Karlicky´, M., & Benz, A. O. 2000, A&A, 360, 715
    • Kumar, P., & Cho, K.-S. 2013, A&A, 557, A115
    • Kumar, P., & Cho, K.-S. 2014, A&A, 572, A83
    • Kumar, P., Cho, K.-S., Bong, S.-C., Park, S.-H., & Kim, Y. H. 2012, ApJ, 746, 67
    • Kumar, P., Innes, D. E., & Inhester, B. 2013, ApJ, 779, L7
    • Kumar, P., & Manoharan, P. K. 2013, A&A, 553, A109
    • Kumar, P., Nakariakov, V. M., & Cho, K.-S. 2015, ApJ, 804, 4
    • Kumar, P., Srivastava, A. K., Somov, B. V., Manoharan, P. K., Erd´elyi, R., & Uddin, W. 2010, ApJ, 723, 1651
    • Kundu, M. R. 1961, J. Geophys. Res., 66, 4308
    • Kundu, M. R. 1965, Solar radio astronomy
    • Kundu, M. R., White, S. M., Gopalswamy, N., & Lim, J. 1994, ApJS, 90, 599
    • Lee, E. J., Archontis, V., & Hood, A. W. 2015, ApJ, 798, L10
    • Lemen, J. R., et al. 2012, Sol. Phys., 275, 17
    • Lin, R. P., et al. 2002, Sol. Phys., 210, 3
    • Liu, W., & Ofman, L. 2014, Sol. Phys., 289, 3233
    • Liu, W., Ofman, L., Nitta, N. V., Aschwanden, M. J., Schrijver, C. J., Title, A. M., & Tarbell, T. D. 2012, ApJ, 753, 52
    • Longcope, D. W., & Welsch, B. T. 2000, ApJ, 545, 1089
    • Masson, S., Pariat, E., Aulanier, G., & Schrijver, C. J. 2009, ApJ, 700, 559
    • Mathioudakis, M., Seiradakis, J. H., Williams, D. R., Avgoloupis, S., Bloomfield, D. S., & McAteer, R. T. J. 2003, A&A, 403, 1101
    • Metcalf, T. R., Hudson, H. S., Kosugi, T., Puetter, R. C., & Pina, R. K. 1996, ApJ, 466, 585
    • Moore, R. L., Sterling, A. C., & Falconer, D. A. 2015, ApJ, 806, 11
    • Nakajima, H., et al. 1994, IEEE Proceedings, 82, 705
    • Nakajima, H., Sekiguchi, H., Sawa, M., Kai, K., & Kawashima, S. 1985, PASJ, 37, 163
    • Nakariakov, V. M., Foullon, C., Verwichte, E., & Young, N. P. 2006, A&A, 452, 343
    • Nakariakov, V. M., Inglis, A. R., Zimovets, I. V., Foullon, C., Verwichte, E., Sych, R., & Myagkova, I. N. 2010, Plasma Physics and Controlled Fusion, 52, 124009
    • Nakariakov, V. M., & Melnikov, V. F. 2009, Space Sci. Rev., 149, 119
    • Nakariakov, V. M., & Zimovets, I. V. 2011, ApJ, 730, L27
    • Ning, Z., Innes, D. E., & Solanki, S. K. 2004, A&A, 419, 1141
    • Pandey, J. C., & Srivastava, A. K. 2009, ApJ, 697, L153
    • Pariat, E., Antiochos, S. K., & DeVore, C. R. 2010, ApJ, 714, 1762
    • Pascoe, D. J., Nakariakov, V. M., & Kupriyanova, E. G. 2013, A&A, 560, A97
    • Pesnell, W. D., Thompson, B. J., & Chamberlin, P. C. 2012, Sol. Phys., 275, 3
    • Pontin, D. I., Priest, E. R., & Galsgaard, K. 2013, ApJ, 774, 154
    • Pugh, C. E., Nakariakov, V. M., & Broomhall, A.-M. 2015, ApJ, 813, L5
    • Roberts, B. 2000, Sol. Phys., 193, 139
    • Scargle, J. D. 1982, ApJ, 263, 835
    • Schou, J., et al. 2012, Sol. Phys., 275, 229
    • Sych, R., Nakariakov, V. M., Karlicky, M., & Anfinogentov, S. 2009, A&A, 505, 791
    • Tajima, T., Sakai, J., Nakajima, H., Kosugi, T., Brunel, F., & Kundu, M. R. 1987, ApJ, 321, 1031
    • Takasao, S., Asai, A., Isobe, H., & Shibata, K. 2012, ApJ, 745, L6
    • Takasao, S., Matsumoto, T., Nakamura, N., & Shibata, K. 2015, ApJ, 805, 135
    • Torrence, C., & Compo, G. P. 1998, Bulletin of the American Meteorological Society, 79, 61
    • Tsuneta, S., et al. 2008, Sol. Phys., 249, 167
    • Wang, H., & Liu, C. 2012, ApJ, 760, 101
    • White, S. M., Krucker, S., Shibasaki, K., Yokoyama, T., Shimojo, M., & Kundu, M. R. 2003, ApJ, 595, L111
    • Wuelser, J.-P., et al. 2004, in Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series, Vol. 5171, Telescopes and Instrumentation for Solar Astrophysics, ed. S. Fineschi & M. A. Gummin, 111
    • Yashiro, S., Gopalswamy, N., Michalek, G., St. Cyr, O. C., Plunkett, S. P., Rich, N. B., & Howard, R. A. 2004, Journal of Geophysical Research (Space Physics), 109, 7105 Fig. 5.- (a-b) HMI magnetogram of the flaring AR on 24 and 25 September 2011. P and N indicate positive and negative
    • polarity fields. Green line is the PIL. (c-d) Hinode/SOT Ca II H line (3968 A˚) images showing the flare ribbon morphology.
    • brightening at the foot-points of the loops. AIA 304 and 171 A˚ images overlaid by HMI magnetogram of positive (red) and
    • negative (blue) polarities. The contour levels are ±200, ±400, ±800, and ±1,600 G. Fig. 9.- (a-d) Time-distance intensity plots along slices S1, S2, and S3 using AIA 304, 171, and 94 A˚ images. AIA 304
    • and 171 A˚ plots are created from the running difference images with the time of 1 min between the images; while the AIA 94
    • ˚ plot is made from the intensity images. The blue curve is the RHESSI hard X-ray flux profile in the 25-50 keV channel. U
    • and L are the upper and lower parts of the jet structure. (e) The AIA 1,600 A˚ mean intensity profile extracted from the box 1.
    • (f-g) AIA 1,600 A˚ time-distance running difference intensity plots along the slices S4 and S5. The blue curve shows the mean
  • No related research data.
  • Discovered through pilot similarity algorithms. Send us your feedback.

Share - Bookmark

Funded by projects

  • RCUK | Warwick Astrophysics Conso...
  • EC | SEISMOSUN

Cite this article