Remember Me
Or use your Academic/Social account:


Or use your Academic/Social account:


You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.


Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message


Verify Password:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Reed, C.; Evans, M. J.; Di Carlo, P.; Lee, J. D.; Carpenter, L. J. (2016)
Languages: English
Types: Article
Measurement of NO2 at low concentrations is non-trivial. A variety of techniques exist, with the conversion of NO2 into NO followed by chemiluminescent detection of NO be- ing prevalent. Historically this conversion has used a catalytic approach (Molybdenum); however this has been plagued with interferences. More recently, photolytic conversion based on UV-LED irradiation of a reaction cell has been used. Although this appears to be robust there have been a range of observations in low NOx environments which have measured higher NO2 concentrations than might be expected from steady state analysis of simultaneously measured NO, O3, JNO2 etc. A range of explanations exist in the literature most of which focus on an unknown and unmeasured “compound X ” that is able to convert NO to NO2 selectively. Here we explore in the laboratory the interference on the photolytic NO2 measurements from the thermal decomposition of peroxyacetyl nitrate (PAN) within the photolysis cell. We find that approximately 5 % of the PAN decomposes within the instrument providing a potentially significant interference. We parameterize the decomposition in terms of the temperature of the light source, the ambient temperature and a mixing timescale (∼ 0.4 s for our instrument) and expand the parametric analysis to other atmospheric compounds that decompose readily to NO2 (HO2NO2, N2O5, CH3O2NO2, IONO2, BrONO2, Higher PANs). We ap- ply these parameters to the output of a global atmospheric model (GEOS-Chem) to investigate the global impact of this interference on (1) the NO2 measurements and (2) the NO2 : NO ratio i.e. the Leighton relationship. We find that there are significant in- terferences in cold regions with low NOx concentrations such as Antarctic, the remote Southern Hemisphere and the upper troposphere. Although this interference is likely instrument specific, it appears that the thermal decomposition of NO2 within the instrument’s photolysis cell may give an explanation for the anomalously high NO2 that has been reported in remote regions, and would reconcile measured and modelled NO2 to NO ratios without having to invoke novel chemistry. Better instrument characterization, coupled to instrumental designs which reduce the heating within the cell seem likely to minimize the interference in the future, thus simplifying interpretation of data from remote locations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • ments of PANs during the New England Air Quality Study 2002, J. Geophys. Res., 112, D20306, doi:10.1029/2007JD008667, 2007.
    • Roumelis, N. and Glavas, S.: Thermal decomposition of peroxyacetyl nitrate in the presence of O2, NO2 and NO, Monatsh. Chem., 123, 63-72, doi:10.1007/BF01045298, 1992.
    • Ryerson, T. B., Williams, E. J., and Fehsenfeld, F. C.: An efficient photolysis system for fast-response NO2 measurements, J. Geophys. Res., 105, 26447-26461, doi:10.1029/2000JD900389, 2000.
    • Sadanaga, Y., Fukumori, Y., Kobashi, T., Nagata, M., Takenaka, N., and Bandow, H.: Development of a selective1 light-emitting diode photolytic NO2 converter for continuously measuring NO2 in the atmosphere, Anal. Chem., 82, 9234-9239, doi:10.1021/ac101703z, 2010.
    • Sander, S. P., Golden, D. M., Kurylo, M. J., Moorgat, G. K., Keller-Rudek, H., Wine, P. H., Ravishankara, A. R., Kolb, C. E., Molina, M. J., Finlayson-Pitts, B. J., Huie, R. E., and Orkin, V. L.: Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies, Evaluation No. 17, JPL Publication 10-6, Jet Propulsion Laboratory, Pasadena, USA, available at: http://jpldataeval. jpl.nasa.gov (last access: 22 October 2015), 2011.
    • Schott: Schott UG5 UV-passing filter, datasheet, available at: http://www.uqgoptics.com/materials_ filters_schott_uvTransmitting_UG5.aspx (last access: 25 July 2014), 1997.
    • Sherwen, T., Evans, M. J., Carpenter, L. J., Andrews, S. J., Lidster, R. T., Dix, B., Koenig, T. K., Volkamer, R., Saiz-Lopez, A., Prados-Roman, C., Mahajan, A. S., and Ordóñez, C.: Iodine's impact on tropospheric oxidants: a global model study in GEOS-Chem, Atmos. Chem. Phys., 16, 1161-1186, doi:10.5194/acp-16-1161-2016, 2016.
    • Singh, H. W., Kanakidou, M., Crutzen, P. J., and Jacob, D. J.: High concentrations and photochemical fate of oxygenated hydrocarbons in the global troposphere, Nature 378, 50-54, doi:10.1038/378050a0, 1995
    • Skalska, K., Miller, J. S., and Ledakowicz, S.: Trends in NOx abatement: a review., Sci. Total Environ., 408, 3976-3989, doi:10.1016/j.scitotenv.2010.06.001, 2010.
    • Stieb, D. M., Judek, S., and Burnett, R. T.: Meta-analysis of time-series studies of air pollution and mortality: effects of gases and particles and the influence of cause of death, age, and season, J. Air Waste Manag. Assoc., 52, 470-484, doi:10.1080/10473289.2002.10470794, 2002.
    • Talukdar, R. K., Burkholder, J. B., Hunter, M., Gilles, M. K., Roberts, J. M., and Ravishankara, A. R.: Atmospheric fate of several alkyl nitrates Part 2 UV absorption cross-sections and photodissociation quantum yields, J. Chem. Soc. Faraday Trans., 93, 2797-2805, doi:10.1039/A701781B, 1997.
    • Thornton, J. A., Wooldridge, P. J., and Cohen, R. C.: Atmospheric NO2: in situ laser-induced fluorescence detection at parts per trillion mixing ratios, Anal. Chem., 72, 528-39, 2000.
    • Trebs, I., Mayol-Bracero, O. L., Pauliquevis, T., Kuhn, U., Sander, R., Ganzeveld, L., Meixner, F. X., Kesselmeier, J., Artaxo, P., and Andreae, M. O.: Impact of the Manaus urban plume on trace gas mixing ratios near the surface in the Amazon Basin: Implications for the NO-NO2-O3 photostationary state and peroxy radical levels, J. Geophys. Res., 117, D05307, doi:10.1029/2011JD016386, 2012.
    • Tuazon, E. C., Carter, W. P. L., and Atkinson, R.: Thermal decomposition of peroxyacetyl nitrate and reactions of acetyl peroxy radicals with NO and NO2 over the temperature range 283-313 K, J. Phys. Chem., 95, 2434-2437, doi:10.1021/j100159a059, 1991.
    • Tuzson, B., Zeyer, K., Steinbacher, M., McManus, J. B., Nelson, D. D., Zahniser, M. S., and Emmenegger, L.: Selective measurements of NO, NO2 and NOy in the free troposphere using quantum cascade laser spectroscopy, Atmos. Meas. Tech., 6, 927-936, doi:10.5194/amt-6-927- 2013, 2013.
    • Val Martin, M., Honrath, R. E., Owen, R. C., and Li, Q. B.: Seasonal variation of nitrogen oxides in the central North Atlantic lower free troposphere, J. Geophys. Res., 113, D17307, doi:10.1029/2007JD009688, 2008.
    • Villena, G., Bejan, I., Kurtenbach, R., Wiesen, P., and Kleffmann, J.: Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber, Atmos. Meas. Tech., 5, 149- 159, doi:10.5194/amt-5-149-2012, 2012.
    • Volz-Thomas, A., Pätz, H.-W., Houben, N., Konrad, S., Mihelcic, D., Klüpfel, T., and Perner, D.: Inorganic trace gases and peroxy radicals during BERLIOZ at Pabstthum: An investigation of the photostationary state of NOx and O3, J. Geophys. Res., 108, 8248, doi:10.1029/2001JD001255, 2003.
    • Wang, W.-C., Liang, X.-Z., Dudek, M. P., Pollard, D., and Thompson, S. L.: Atmospheric ozone as a climate gas, Atmos. Res., 37, 247-256, doi:10.1016/0169-8095(94)00080-W, 1995.
    • Warneck, P. and Zerbach, T.: Synthesis of peroxyacetyl nitrate in air by acetone photolysis, Environ. Sci. Technol., 26, 74-79, doi:10.1021/es00025a005, 1992.
    • Whalley, L. K., Lewis, A. C., McQuaid, J. B., Purvis, R. M., Lee, J. D., Stemmler, K., Zellweger, C., and Ridgeon, P.: Two high-speed, portable GC systems designed for the measurement of nonmethane hydrocarbons and PAN: results from the Jungfraujoch High Altitude Observatory, J. Environ. Monit., 6, 234-41, doi:10.1039/b310022g, 2004.
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article