LOGIN TO YOUR ACCOUNT

Username
Password
Remember Me
Or use your Academic/Social account:

CREATE AN ACCOUNT

Or use your Academic/Social account:

Congratulations!

You have just completed your registration at OpenAire.

Before you can login to the site, you will need to activate your account. An e-mail will be sent to you with the proper instructions.

Important!

Please note that this site is currently undergoing Beta testing.
Any new content you create is not guaranteed to be present to the final version of the site upon release.

Thank you for your patience,
OpenAire Dev Team.

Close This Message

CREATE AN ACCOUNT

Name:
Username:
Password:
Verify Password:
E-mail:
Verify E-mail:
*All Fields Are Required.
Please Verify You Are Human:
fbtwitterlinkedinvimeoflicker grey 14rssslideshare1
Reed, C.; Evans, M. J.; Di Carlo, P.; Lee, J. D.; Carpenter, L. J. (2016)
Languages: English
Types: Article
Subjects:
Measurement of NO2 at low concentrations is non-trivial. A variety of techniques exist, with the conversion of NO2 into NO followed by chemiluminescent detection of NO be- ing prevalent. Historically this conversion has used a catalytic approach (Molybdenum); however this has been plagued with interferences. More recently, photolytic conversion based on UV-LED irradiation of a reaction cell has been used. Although this appears to be robust there have been a range of observations in low NOx environments which have measured higher NO2 concentrations than might be expected from steady state analysis of simultaneously measured NO, O3, JNO2 etc. A range of explanations exist in the literature most of which focus on an unknown and unmeasured “compound X ” that is able to convert NO to NO2 selectively. Here we explore in the laboratory the interference on the photolytic NO2 measurements from the thermal decomposition of peroxyacetyl nitrate (PAN) within the photolysis cell. We find that approximately 5 % of the PAN decomposes within the instrument providing a potentially significant interference. We parameterize the decomposition in terms of the temperature of the light source, the ambient temperature and a mixing timescale (∼ 0.4 s for our instrument) and expand the parametric analysis to other atmospheric compounds that decompose readily to NO2 (HO2NO2, N2O5, CH3O2NO2, IONO2, BrONO2, Higher PANs). We ap- ply these parameters to the output of a global atmospheric model (GEOS-Chem) to investigate the global impact of this interference on (1) the NO2 measurements and (2) the NO2 : NO ratio i.e. the Leighton relationship. We find that there are significant in- terferences in cold regions with low NOx concentrations such as Antarctic, the remote Southern Hemisphere and the upper troposphere. Although this interference is likely instrument specific, it appears that the thermal decomposition of NO2 within the instrument’s photolysis cell may give an explanation for the anomalously high NO2 that has been reported in remote regions, and would reconcile measured and modelled NO2 to NO ratios without having to invoke novel chemistry. Better instrument characterization, coupled to instrumental designs which reduce the heating within the cell seem likely to minimize the interference in the future, thus simplifying interpretation of data from remote locations.
  • The results below are discovered through our pilot algorithms. Let us know how we are doing!

    • 15, 28699-28747, 2015 15, 28699-28747, 2015 15, 28699-28747, 2015 Dentener, F. J. and Crutzen, P. J.: Reaction of N2O5 on tropospheric aerosols: impact on the global distributions of NOx, O3, and OH, J. Geophys. Res., 94, 7149-7163, doi:10.1029/92JD02979, 1993.
    • Di Carlo, P., Aruffo, E., Busilacchio, M., Giammaria, F., Dari-Salisburgo, C., Biancofiore, F., Vis5 conti, G., Lee, J., Moller, S., Reeves, C. E., Bauguitte, S., Forster, G., Jones, R. L., and Ouyang, B.: Aircraft based four-channel thermal dissociation laser induced fluorescence instrument for simultaneous measurements of NO2, total peroxy nitrate, total alkyl nitrate, and HNO3, Atmos. Meas. Tech., 6, 971-980, doi:10.5194/amt-6-971-2013, 2013.
    • Drummond, J. W., Volz, A., and Ehhalt, D. H.: An optimized chemiluminescence detector for 10 tropospheric NO measurements, J. Atmos. Chem., 2, 287-306, doi:10.1007/BF00051078, 1985.
    • S., Marley, N. A., Grutter, M., Marquez, C., Blanco, S., Cardenas, B., Retama, A., Ramos 15 Villegas, C. R., Kolb, C. E., Molina, L. T., and Molina, M. J.: Evaluation of nitrogen dioxide chemiluminescence monitors in a polluted urban environment, Atmos. Chem. Phys., 7, 2691-2704, doi:10.5194/acp-7-2691-2007, 2007.
    • Fehsenfeld, F. C., Dickerson, R. R., Hobler, G., Luke, W. T., Nunnermacker, L. J., Roberts, J. M., Curran, C. M., Eubank, C. S., Fahey, D. W., Mindplay, P. C., and Pickering, K. E.: A ground20 based intercomparison of NO, NOx, and NOy measurement techniques, J. Geophys. Res., 92, 710-722, doi:10.1029/JD092iD12p14710, 1987.
    • Fehsenfeld, F. C., Drummond, J. W., Roychowdhury, U. K., Galvin, P. J., Williams, E. J., Burr, M. P., Parrish, D. D., Hobler, G., Langford, A. O., Calvert, J. G., Ridley, B. A., Heikes, B. G., Kok, G. L., Shetier, J. D., Walega, J. G., Elsworth, C. M., and Mohnen, V. A.: 25 Intercomparison of NO2 measurement techniques, J. Geophys. Res., 95, 3579-3597, doi:10.1029/JD095iD04p03579, 1990.
    • Fischer, G. and Nwankwoala, A. U.: A spectroscopic study of the thermal decomposition of peroxyacetyl nitrate (PAN), Atmos. Environ., 29, 3277-3280, doi:10.1016/1352-2310(95)00252- T, 1995.
    • 30 Fontijn, A., Sabadell, A. J., and Ronco, R. J.: Homogeneous chemiluminescent measurement of nitric oxide with ozone. Implications for continuous selective monitoring of gaseous air pollutants, Anal. Chem., 42, 575-579, doi:10.1021/ac60288a034, 1970.
    • Villena, G., Bejan, I., Kurtenbach, R., Wiesen, P., and Kleffmann, J.: Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber, Atmos. Meas. Tech., 5, 149-159, doi:10.5194/amt-5-149-2012, 2012.
    • Wang, W.-C., Liang, X.-Z., Dudek, M. P., Pollard, D., and Thompson, S. L.: Atmospheric ozone 5 as a climate gas, Atmos. Res., 37, 247-256, doi:10.1016/0169-8095(94)00080-W, 1995.
    • Warneck, P. and Zerbach, T.: Synthesis of peroxyacetyl nitrate in air by acetone photolysis, Environ. Sci. Technol., 26, 74-79, doi:10.1021/es00025a005, 1992.
    • Whalley, L. K., Lewis, A. C., McQuaid, J. B., Purvis, R. M., Lee, J. D., Stemmler, K., Zell- | weger, C., and Ridgeon, P.: Two high-speed, portable GC systems designed for the mea10 surement of non-methane hydrocarbons and PAN: results from the Jungfraujoch High Altitude Observatory, J. Environ. Monit., 6, 234-41, doi:10.1039/b310022g, 2004.
    • Zellweger, C., Ammann, M., Buchmann, B., Hofer, P., Lugauer, M., Streit, N., Weingartner, E., and Baltensperger, U.: Summertime NOy speciation at the Jungfraujoch, 3580 m above sea level, Switzerland, J. Geophys. Res., 105, 6655-6667, doi:10.1029/1999JD901126, 2000.
    • 15 Zhang, L., Wiebe, A., Vet, R., Mihele, C., O'Brien, J. M., Iqbal, S., and Liang, Z.: Measurements of reactive oxidized nitrogen at eight Canadian rural sites, Atmos. Environ., 42, 8065-8078, doi:10.1016/j.atmosenv.2008.06.034, 2008. |
  • No related research data.
  • No similar publications.

Share - Bookmark

Cite this article